Advertisement

Nuclear Medicine and Molecular Imaging

, Volume 53, Issue 3, pp 167–171 | Cite as

Perspectives for Concepts of Individualized Radionuclide Therapy, Molecular Radiotherapy, and Theranostic Approaches

  • Makoto HosonoEmail author
Review
  • 109 Downloads

Abstract

Radionuclide therapy (RNT) stands on the delivery of radiation to tumors or non-tumor target organs using radiopharmaceuticals that are designed to have specific affinity to targets. RNT is recently called molecular radiotherapy (MRT) by some advocators in order to emphasize its characteristics as radiotherapy and the relevance of dosimetry-guided optimization of treatment. Moreover, RNT requires relevant radiation protection standards because it employs unsealed radionuclides and gives therapeutic radiation doses in humans. On the basis of these radiation protection standards, the development and use of radiopharmaceuticals for combined application through diagnostics and therapeutics lead to theranostic approaches that will enhance the efficacy and safety of treatment by implementing dosimetry-based individualization.

Keywords

Radionuclide therapy Theranostics Radiopharmaceuticals 

Notes

Acknowledgements

The author is grateful to Drs. Yoshiharu Yonekura, Sören Mattsson, Wesley Bolch, Glenn Flux, Darrell Fisher, Stig Palm, Alfred Morgenstern, Kimberly Applegate, Madan Rehani, Colin Martin, Keon Kang, and Reiko Kanda for their great supports in collecting updates on scientific reports.

Funding

This work was funded by JSPS KAKENHI Grant Number JP 18K07651, MHLW Health Labour Sciences Research Grant Number 201721015A, and Nuclear Regulation Agency Japan Grant on management of short-lived alpha emitters.

Compliance with Ethical Standards

Conflict of Interest

Makoto Hosono declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Informed Consent

For this type of study, formal consent is not required.

References

  1. 1.
    Chatal JF, Hoefnagel CA. Radionuclide therapy. Lancet. 1999;354:931–5.CrossRefGoogle Scholar
  2. 2.
    Zukotynski K, Jadvar H, Capala J, Fahey F. Targeted radionuclide therapy: practical applications and future prospects. Biomark Cancer. 2016;8:35–8.Google Scholar
  3. 3.
    Eberlein U, Cremonesi M, Lassmann M. Individualized dosimetry for theranostics: necessary, nice to have, or counterproductive? J Nucl Med. 2017;58:97S–103S.CrossRefGoogle Scholar
  4. 4.
    Stokke C, Gabina PM, Solny P, Cicone F, Sandstrom M, Gleisner KS, et al. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the internal dosimetry task force. EJNMMI Phys. 2017;4:27.CrossRefGoogle Scholar
  5. 5.
    Bonnema SJ, Hegedus L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev. 2012;33:920–80.CrossRefGoogle Scholar
  6. 6.
    Pryma DA, Mandel SJ. Radioiodine therapy for thyroid Cancer in the era of risk stratification and alternative targeted therapies. J Nucl Med. 2014;55:1485–91.CrossRefGoogle Scholar
  7. 7.
    Luster M, Pfestroff A, Hanscheid H, Verburg FA. Radioiodine therapy. Semin Nucl Med. 2017;47:126–34.CrossRefGoogle Scholar
  8. 8.
    Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology: VII. The use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc. 1946;131:81–6.CrossRefGoogle Scholar
  9. 9.
    Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132:838–47.CrossRefGoogle Scholar
  10. 10.
    Wagner HN Jr, Wiseman GA, Marcus CS, Nabi HA, Nagle CE, Fink-Bennett DM, et al. Administration guidelines for Radioimmunotherapy of non-Hodgkin’s lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43:267–72.Google Scholar
  11. 11.
    Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med. 2003;44:465–74.Google Scholar
  12. 12.
    Witzig TE, Molina A, Gordon LI, Emmanouilides C, Schilder RJ, Flinn IW, et al. Long-term responses in patients with recurring or refractory B-cell non-Hodgkin lymphoma treated with yttrium 90 ibritumomab tiuxetan. Cancer. 2007;109:1804–10.CrossRefGoogle Scholar
  13. 13.
    Bexxar KM. Iodine I 131 tositumomab, effective in long-term follow-up of non-Hodgkin’s lymphoma. Cancer Biol Ther. 2007;6:996–7.Google Scholar
  14. 14.
    Bodei L, Pepe G, Paganelli G. Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors with somatostatin analogues. Eur Rev Med Pharmacol Sci. 2010;14:347–51.Google Scholar
  15. 15.
    Burki TK. 177Lu-DOTATATE for midgut neuroendocrine tumours. Lancet Oncol. 2017;18:e74.CrossRefGoogle Scholar
  16. 16.
    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-DOTATATE for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.CrossRefGoogle Scholar
  17. 17.
    Strosberg J, Krenning E. 177Lu-DOTATATE for midgut neuroendocrine tumors. N Engl J Med. 2017;376:1391–2.CrossRefGoogle Scholar
  18. 18.
    Hosono M, Ikebuchi H, Nakamura Y, Yanagida S, Kinuya S. Introduction of the targeted alpha therapy (with radium-223) into clinical practice in Japan: learnings and implementation. Ann Nucl Med. 2018 online first.Google Scholar
  19. 19.
    Parker C, Heidenreich A, Nilsson S, Shore N. Current approaches to incorporation of radium-223 in clinical practice. Prostate Cancer Prostatic Dis. 2018;21:37–47.CrossRefGoogle Scholar
  20. 20.
    Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefGoogle Scholar
  21. 21.
    Hosono M. Radiation protection in therapy with radiopharmaceuticals. Int J Radiat Biol. 2018 online first.Google Scholar
  22. 22.
    ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP. 2007;37:1–332.Google Scholar
  23. 23.
    ICRP. ICRP publication 105. Radiation protection in medicine. Ann ICRP. 2007;37:1–63.Google Scholar
  24. 24.
    ICRP. ICRP publication 94. Release of nuclear medicine patients after therapy with unsealed sources. Ann ICRP. 2004;34:1–79.Google Scholar
  25. 25.
    Flux GD, Sjogreen Gleisner K, Chiesa C, Lassmann M, Chouin N, Gear J, et al. From fixed activities to personalized treatments in radionuclide therapy: lost in translation? Eur J Nucl Med Mol Imaging. 2018;45:152–4.CrossRefGoogle Scholar
  26. 26.
    Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJG, et al. Clinical radionuclide therapy dosimetry: the quest for the “holy gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86.CrossRefGoogle Scholar
  27. 27.
    Giammarile F, Muylle K, Delgado Bolton R, Kunikowska J, Haberkorn U, Oyen W. Dosimetry in clinical radionuclide therapy: the devil is in the detail. Eur J Nucl Med Mol Imaging. 2017;44:2137–9.CrossRefGoogle Scholar
  28. 28.
    Chiesa C, Sjogreen Gleisner K, Flux G, Gear J, Walrand S, Bacher K, et al. The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy. Eur J Nucl Med Mol Imaging. 2017;44:1783–6.CrossRefGoogle Scholar
  29. 29.
    Hartung-Knemeyer V, Nagarajah J, Jentzen W, Ruhlmann M, Freudenberg LS, Stahl AR, et al. Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124-iodine: predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of Tsh stimulation and number of preceding radioiodine therapies. Ann Nucl Med. 2012;26:723–9.CrossRefGoogle Scholar
  30. 30.
    Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, et al. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:3217–25.CrossRefGoogle Scholar
  31. 31.
    Verburg FA, Hanscheid H, Biko J, Hategan MC, Lassmann M, Kreissl MC, et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2010;37:896–903.CrossRefGoogle Scholar
  32. 32.
    Verburg FA, Luster M, Giovanella L, Lassmann M, Chiesa C, Chouin N, et al. The “reset button” revisited: why high activity (131)I therapy of advanced differentiated thyroid cancer after dosimetry is advantageous for patients. Eur J Nucl Med Mol Imaging. 2017;44:915–7.CrossRefGoogle Scholar
  33. 33.
    Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.CrossRefGoogle Scholar
  34. 34.
    Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, et al. Theranostics using antibodies and antibody-related therapeutics. J Nucl Med. 2017;58:83S–90S.CrossRefGoogle Scholar
  35. 35.
    Choudhury P, Gupta M. Personalized & precision medicine in cancer: a theranostic approach. Curr Radiopharm. 2017;10:166–70.CrossRefGoogle Scholar
  36. 36.
    Nitipir C, Niculae D, Orlov C, Barbu MA, Popescu B, Popa AM, et al. Update on radionuclide therapy in oncology. Oncol Lett. 2017;14:7011–5.Google Scholar
  37. 37.
    Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59:795–802.CrossRefGoogle Scholar
  38. 38.
    Chittenden SJ, Hindorf C, Parker CC, Lewington VJ, Pratt BE, Johnson B, et al. A phase 1, open-label study of the biodistribution, pharmacokinetics, and dosimetry of 223Ra-dichloride in patients with hormone-refractory prostate cancer and skeletal metastases. J Nucl Med. 2015;56:1304–9.CrossRefGoogle Scholar
  39. 39.
    Pratt BE, Hindorf C, Chittenden SJ, Parker CC, Excretion FGD. Whole-body retention of radium-223 dichloride administered for the treatment of bone metastases from castration resistant prostate cancer. Nucl Med Commun. 2018;39:125–30.Google Scholar
  40. 40.
    Flux GD. Imaging and dosimetry for radium-223: the potential for personalized treatment. Br J Radiol. 2017;90:20160748.CrossRefGoogle Scholar
  41. 41.
    Murray I, Chittenden SJ, Denis-Bacelar AM, Hindorf C, Parker CC, Chua S, et al. The potential of (223)Ra and (18)F-fluoride imaging to predict bone lesion response to treatment with (223)Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1832–44.CrossRefGoogle Scholar
  42. 42.
    Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun. 2012;33:726–32.CrossRefGoogle Scholar
  43. 43.
    Minguez P, Gustafsson J, Flux G, Gleisner KS. Biologically effective dose in fractionated molecular radiotherapy—application to treatment of neuroblastoma with (131)I-MIBG. Phys Med Biol. 2016;61:2532–51.CrossRefGoogle Scholar
  44. 44.
    Sjogreen Gleisner K, Spezi E, Solny P, Gabina PM, Cicone F, Stokke C, et al. Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Phys. 2017;4:28.CrossRefGoogle Scholar
  45. 45.
    Strigari L, Konijnenberg M, Chiesa C, Bardies M, Du Y, Gleisner KS, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41:1976–88.CrossRefGoogle Scholar
  46. 46.
    Iagaru A, Gambhir SS, Goris ML. 90Y-ibritumomab therapy in refractory non-Hodgkin's lymphoma: observations from 111In-ibritumomab pretreatment imaging. J Nucl Med. 2008;49:1809–12.CrossRefGoogle Scholar
  47. 47.
    Hanaoka K, Hosono M, Tatsumi Y, Ishii K, Im SW, Tsuchiya N, et al. Heterogeneity of intratumoral (111)in-ibritumomab tiuxetan and (18)F-FDG distribution in association with therapeutic response in radioimmunotherapy for B-cell non-Hodgkin’s lymphoma. EJNMMI Res. 2015;5:10.CrossRefGoogle Scholar
  48. 48.
    Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.CrossRefGoogle Scholar

Copyright information

© Korean Society of Nuclear Medicine 2019

Authors and Affiliations

  1. 1.Institute of Advanced Clinical Medicine and Department of RadiologyKindai University Faculty of MedicineOsaka-SayamaJapan

Personalised recommendations