Advertisement

Nuclear Medicine and Molecular Imaging

, Volume 53, Issue 1, pp 14–29 | Cite as

Radiomics in Oncological PET/CT: a Methodological Overview

  • Seunggyun Ha
  • Hongyoon Choi
  • Jin Chul Paeng
  • Gi Jeong CheonEmail author
Review
  • 45 Downloads

Abstract

Radiomics is a medical imaging analysis approach based on computer-vision. Metabolic radiomics in particular analyses the spatial distribution patterns of molecular metabolism on PET images. Measuring intratumoral heterogeneity via image is one of the main targets of radiomics research, and it aims to build a image-based model for better patient management. The workflow of radiomics using texture analysis follows these steps: 1) imaging (image acquisition and reconstruction); 2) preprocessing (segmentation & quantization); 3) quantification (texture matrix design & texture feature extraction); and 4) analysis (statistics and/or machine learning). The parameters or conditions at each of these steps are effect on the results. In statistical testing or modeling, problems such as multiple comparisons, dependence on other variables, and high dimensionality of small sample size data should be considered. Standardization of methodology and harmonization of image quality are one of the most important challenges with radiomics methodology. Even though there are current issues in radiomics methodology, it is expected that radiomics will be clinically useful in personalized medicine for oncology.

Keywords

Radiomics Texture analysis Intratumoral heterogeneity FDG PET/CT Oncology 

Abbreviations

AQ

Absolute quantization

AUC-CSH

Area under curve of cumulative SUV-volume histogram

CSH

Cumulative SUV-volume histogram

CV

Coefficient of variation

FBN

Fixed bin number

FBS

Fixed bin size

FCM

Fuzzy C-means

FDR

False-discovery rate

18F-FDG

18F-fluorodeoxyglucose

FLAB

Fuzzy locally adaptive Bayesian

GLCM

Gray-level co-occurrence matrix

GLRLM

Gray-level run-length matrix

GLSZM

Gray-level size zone matrix

IFH

Intensity frequency histogram

ITH

Intratumoral heterogeneity

IVH

Intensity volume histogram

MTV

Metabolic tumor volume

NGTDM

Neighborhood gray-tone difference matrix

PET/CT

Positron emission tomography/computed tomography

PVC

Partial volume correction

RQ

Relative quantization

SAM

Second angular moment

SGLDM

Spatial gray-level dependence matrix

SUV

Standardized uptake value

TLG

Total lesion glycolysis

Notes

Compliance with Ethical Standards

Conflict of Interest

Seunggyun Ha, Hongyoon Choi, Jin Chul Paeng, and Gi Jeong Cheon declare no conflict of interest.

Ethical Statement

This work does not contain any studies with human participants or animals performed by any of the authors. For this type of study, formal consent is not required.

Informed Consent

Not applicable.

References

  1. 1.
    Shackney SE, Shankey TV. Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry Part A. 1995;21(1):2–5.Google Scholar
  2. 2.
    Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103(8):1139.Google Scholar
  3. 3.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.Google Scholar
  4. 4.
    Sankin A, Hakimi AA, Mikkilineni N, Ostrovnaya I, Silk MT, Liang Y, et al. The impact of genetic heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med. 2014;3(6):1485–92.  https://doi.org/10.1002/cam4.293.Google Scholar
  5. 5.
    Kim L, Tsao MS. Tumour tissue sampling for lung cancer management in the era of personalised therapy: what is good enough for molecular testing? Eur Respir J. 2014;44:erj01970–2013.Google Scholar
  6. 6.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.Google Scholar
  7. 7.
    Hoppe RT, Advani RH, Ai WZ, Ambinder RF, Aoun P, Armand P, et al. NCCN guidelines insights: Hodgkin lymphoma, version 1.2018. J Natl Compr Cancer Netw: JNCCN. 2018;16(3):245–54.  https://doi.org/10.6004/jnccn.2018.0013.Google Scholar
  8. 8.
    Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99(6):1107–13.  https://doi.org/10.3324/haematol.2013.103218.Google Scholar
  9. 9.
    Arimoto MK, Nakamoto Y, Higashi T, Ishimori T, Ishibashi M, Togashi K. Intra- and inter-observer agreement in the visual interpretation of interim 18F-FDG PET/CT in malignant lymphoma: influence of clinical information. Acta Radiol (Stockholm, Sweden : 1987). 2018;59:1218–24.  https://doi.org/10.1177/0284185117751279.Google Scholar
  10. 10.
    Duncan JS, Ayache N. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):85–106.Google Scholar
  11. 11.
    Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3(1):6–12.Google Scholar
  12. 12.
    Casasnovas R-O, Meignan M, Berriolo-Riedinger A, Bardet S, Julian A, Thieblemont C, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood. 2011;118:37–43.  https://doi.org/10.1182/blood-2010-12-327767.Google Scholar
  13. 13.
    Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18 F] FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.Google Scholar
  14. 14.
    Kajáry K, Tokés T, Dank M, Kulka J, Szakáll S Jr, Lengyel Z. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer. Nucl Med Commun. 2015;36(1):28–37.Google Scholar
  15. 15.
    Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50(3):340–7.Google Scholar
  16. 16.
    Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging. 2013;40(12):1836–42.  https://doi.org/10.1007/s00259-013-2511-y.Google Scholar
  17. 17.
    Moon SH, Hyun SH, Choi JY. Prognostic significance of volume-based PET parameters in cancer patients. Korean J Radiol. 2013;14(1):1–12.Google Scholar
  18. 18.
    Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.Google Scholar
  19. 19.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2):563–77.Google Scholar
  20. 20.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.Google Scholar
  21. 21.
    Fang Y-HD, Lin C-Y, Shih M-J, Wang H-M, Ho T-Y, Liao C-T, et al. Development and evaluation of an open-source software package CGITA for quantifying tumor heterogeneity with molecular images. Biomed Res Int. 2014;2014:9.  https://doi.org/10.1155/2014/248505.Google Scholar
  22. 22.
    Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015;42(3):1341–53.  https://doi.org/10.1118/1.4908210.Google Scholar
  23. 23.
    Nioche C, Orlhac F, Boughdad S, Reuze S, Goya-Outi J, Robert C, et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018.  https://doi.org/10.1158/0008-5472.can-18-0125.
  24. 24.
    Cid YD, Castelli J, Schaer R, Scher N, Pomoni A, Prior JO, et al. QuantImage: an online tool for high-throughput 3D radiomics feature extraction in PET-CT. Biomedical texture analysis. Amsterdam: Elsevier; 2018. p. 349–77.Google Scholar
  25. 25.
    Folkert MR, Setton J, Apte AP, Grkovski M, Young RJ, Schöder H, et al. Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics. Phys Med Biol. 2017;62(13):5327.Google Scholar
  26. 26.
    Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45(2):207–17.Google Scholar
  27. 27.
    Lovat E, Siddique M, Goh V, Ferner RE, Cook GJR, Warbey VS. The effect of post-injection (18)F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1. EJNMMI Res. 2017;7(1):35.  https://doi.org/10.1186/s13550-017-0282-3.Google Scholar
  28. 28.
    Yip S, McCall K, Aristophanous M, Chen AB, Aerts HJ, Berbeco R. Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS One. 2014;9(12):e115510.  https://doi.org/10.1371/journal.pone.0115510.Google Scholar
  29. 29.
    Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102(2):239–45.  https://doi.org/10.1016/j.radonc.2011.10.014.Google Scholar
  30. 30.
    Grootjans W, Tixier F, van der Vos CS, Vriens D, Le Rest CC, Bussink J, et al. The impact of optimal respiratory gating and image noise on evaluation of intratumor heterogeneity on 18F-FDG PET imaging of lung cancer. J Nucl Med. 2016;57(11):1692–8.  https://doi.org/10.2967/jnumed.116.173112.Google Scholar
  31. 31.
    Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8(6):524–34.  https://doi.org/10.1016/j.tranon.2015.11.013.Google Scholar
  32. 32.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol (Stockholm, Sweden). 2010;49(7):1012–6.  https://doi.org/10.3109/0284186x.2010.498437.Google Scholar
  33. 33.
    Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56(11):1667–73.  https://doi.org/10.2967/jnumed.115.156927.Google Scholar
  34. 34.
    Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27(11):4498–509.  https://doi.org/10.1007/s00330-017-4859-z.Google Scholar
  35. 35.
    Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40(11):1662–71.  https://doi.org/10.1007/s00259-013-2486-8.Google Scholar
  36. 36.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38(9):1636–47.  https://doi.org/10.1007/s00259-011-1845-6.Google Scholar
  37. 37.
    Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. (18)F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43(13):2324–35.  https://doi.org/10.1007/s00259-016-3441-2.Google Scholar
  38. 38.
    Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59(8):1321–8.  https://doi.org/10.2967/jnumed.117.199935.Google Scholar
  39. 39.
    Bagci U, Chen X, Udupa JK. Hierarchical scale-based multiobject recognition of 3-D anatomical structures. IEEE Trans Med Imaging. 2012;31(3):777–89.  https://doi.org/10.1109/tmi.2011.2180920.Google Scholar
  40. 40.
    Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.  https://doi.org/10.1016/j.compbiomed.2014.04.014.Google Scholar
  41. 41.
    Bagci U, Foster B, Miller-Jaster K, Luna B, Dey B, Bishai WR, et al. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging. EJNMMI Res. 2013;3(1):55.  https://doi.org/10.1186/2191-219x-3-55.Google Scholar
  42. 42.
    Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys. 1999;44(3):593–7.Google Scholar
  43. 43.
    Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol. 1998;47(3):285–92.Google Scholar
  44. 44.
    Erasmus JJ, Gladish GW, Broemeling L, Sabloff BS, Truong MT, Herbst RS, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol. 2003;21(13):2574–82.  https://doi.org/10.1200/jco.2003.01.144.Google Scholar
  45. 45.
    Fox JL, Rengan R, O'Meara W, Yorke E, Erdi Y, Nehmeh S, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys. 2005;62(1):70–5.  https://doi.org/10.1016/j.ijrobp.2004.09.020.Google Scholar
  46. 46.
    Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D. PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging. 2011;38(4):663–72.  https://doi.org/10.1007/s00259-010-1688-6.Google Scholar
  47. 47.
    Bagci U, Yao J, Caban J, Turkbey E, Aras O, Mollura DJ. A graph-theoretic approach for segmentation of PET images. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8479–82.  https://doi.org/10.1109/iembs.2011.6092092.
  48. 48.
    Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46(8):1342–8.Google Scholar
  49. 49.
    Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 2007;67(3):720–6.  https://doi.org/10.1016/j.ijrobp.2006.09.039.Google Scholar
  50. 50.
    Ha S, Park S, Bang JI, Kim EK, Lee HY. Metabolic radiomics for pretreatment (18)F-FDG PET/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci Rep. 2017;7(1):1556.  https://doi.org/10.1038/s41598-017-01524-7.Google Scholar
  51. 51.
    Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55(3):414–22.  https://doi.org/10.2967/jnumed.113.129858.Google Scholar
  52. 52.
    Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80(12 Suppl):2505–9.Google Scholar
  53. 53.
    Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99.  https://doi.org/10.1007/s00259-008-0875-1.Google Scholar
  54. 54.
    Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol. 2006;80(1):43–50.  https://doi.org/10.1016/j.radonc.2006.07.006.Google Scholar
  55. 55.
    Drever L, Robinson DM, McEwan A, Roa W. A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys. 2006;33(6):1583–94.  https://doi.org/10.1118/1.2198308.Google Scholar
  56. 56.
    Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, et al. Robustness of radiomic features in [(11)C]choline and [(18)F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol. 2016;18(6):935–45.  https://doi.org/10.1007/s11307-016-0973-6.Google Scholar
  57. 57.
    Cheng NM, Fang YH, Tsan DL, Hsu CH, Yen TC. Respiration-averaged CT for attenuation correction of PET images—impact on PET texture features in non-small cell lung cancer patients. PLoS One. 2016;11(3):e0150509.  https://doi.org/10.1371/journal.pone.0150509.Google Scholar
  58. 58.
    Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32(3):294–301.  https://doi.org/10.1007/s00259-004-1566-1.Google Scholar
  59. 59.
    Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med. 2011;52(11):1690–7.  https://doi.org/10.2967/jnumed.111.092767.Google Scholar
  60. 60.
    Zhu W, Jiang T Automation segmentation of PET image for brain tumors. Nuclear Science Symposium Conference Record. 2003 IEEE; 2003: IEEE.Google Scholar
  61. 61.
    Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28(6):881–93.  https://doi.org/10.1109/tmi.2008.2012036.Google Scholar
  62. 62.
    Werner-Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys. 2012;82(3):1164–71.  https://doi.org/10.1016/j.ijrobp.2010.12.055.Google Scholar
  63. 63.
    Geets X, Lee JA, Bol A, Lonneux M, Gregoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34(9):1427–38.  https://doi.org/10.1007/s00259-006-0363-4.Google Scholar
  64. 64.
    Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151–65.  https://doi.org/10.1007/s00259-016-3427-0.Google Scholar
  65. 65.
    Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77(1):301–8.  https://doi.org/10.1016/j.ijrobp.2009.08.018.Google Scholar
  66. 66.
    Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.  https://doi.org/10.1038/nrclinonc.2017.141.Google Scholar
  67. 67.
    Cheng NM, Fang YH, Lee LY, Chang JT, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42(3):419–28.  https://doi.org/10.1007/s00259-014-2933-1.Google Scholar
  68. 68.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52(3):369–78.  https://doi.org/10.2967/jnumed.110.082404.Google Scholar
  69. 69.
    Lovinfosse P, Janvary ZL, Coucke P, Jodogne S, Bernard C, Hatt M, et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging. 2016;43(8):1453–60.  https://doi.org/10.1007/s00259-016-3314-8.Google Scholar
  70. 70.
    Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol (Stockholm, Sweden). 2013;52(7):1391–7.  https://doi.org/10.3109/0284186x.2013.812798.Google Scholar
  71. 71.
    Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5:11075.  https://doi.org/10.1038/srep11075.Google Scholar
  72. 72.
    Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I. 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. 2015;10(12):e0145063.  https://doi.org/10.1371/journal.pone.0145063.Google Scholar
  73. 73.
    Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2017;58(3):387–92.Google Scholar
  74. 74.
    van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18(5):788–95.  https://doi.org/10.1007/s11307-016-0940-2.Google Scholar
  75. 75.
    Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014;55(1):37–42.  https://doi.org/10.2967/jnumed.112.116715.Google Scholar
  76. 76.
    Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56(1):38–44.  https://doi.org/10.2967/jnumed.114.144055.Google Scholar
  77. 77.
    Presotto L, Bettinardi V, De Bernardi E, Belli ML, Cattaneo GM, Broggi S, et al. PET textural features stability and pattern discrimination power for radiomics analysis: an “ad-hoc” phantoms study. Phys Med. 2018;50:66–74.  https://doi.org/10.1016/j.ejmp.2018.05.024.Google Scholar
  78. 78.
    Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40(1):133–40.  https://doi.org/10.1007/s00259-012-2247-0.Google Scholar
  79. 79.
    Chung HH, Kang SY. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer. J Gynecol Oncol. 2016;27(2):e15.  https://doi.org/10.3802/jgo.2016.27.e15.Google Scholar
  80. 80.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42(6):1162–71.  https://doi.org/10.1016/j.patcog.2008.08.011.Google Scholar
  81. 81.
    Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9.  https://doi.org/10.1016/j.crad.2004.07.008.Google Scholar
  82. 82.
    Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging. 2009;28(3):374–83.  https://doi.org/10.1109/tmi.2008.2004425.Google Scholar
  83. 83.
    Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, et al. Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol. 2018;28(8):3245–54.  https://doi.org/10.1007/s00330-018-5343-0.Google Scholar
  84. 84.
    Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–74.Google Scholar
  85. 85.
    Galloway MM. Texture analysis using gray level run lengths. Comput Graphics Image Process. 1975;4(2):172–9.  https://doi.org/10.1016/S0146-664X(75)80008-6.Google Scholar
  86. 86.
    Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recognition and Information Processing. 2009: 140-145.Google Scholar
  87. 87.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.  https://doi.org/10.1038/ncomms5006.Google Scholar
  88. 88.
    Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.  https://doi.org/10.1088/0031-9155/60/14/5471.Google Scholar
  89. 89.
    Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng. 2014;61(3):630–7.  https://doi.org/10.1109/tbme.2013.2284600.Google Scholar
  90. 90.
    Thibault G. Advanced statistical matrices for texture characterization: application to DNA chromatin and microtubule network classification. 18th IEEE International Conference on Image Processing. 2011.Google Scholar
  91. 91.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53(5):693–700.  https://doi.org/10.2967/jnumed.111.099127.Google Scholar
  92. 92.
    van Velden FH, Nissen IA, Jongsma F, Velasquez LM, Hayes W, Lammertsma AA, et al. Test-retest variability of various quantitative measures to characterize tracer uptake and/or tracer uptake heterogeneity in metastasized liver for patients with colorectal carcinoma. Mol Imaging Biol. 2014;16(1):13–8.  https://doi.org/10.1007/s11307-013-0660-9.Google Scholar
  93. 93.
    Chung HH, Kang SY, Ha S, Kim J-W, Park N-H, Song YS, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer. J Gynecol Oncol. 2015;27(2):e15.Google Scholar
  94. 94.
    Park S, Ha S, Lee S-H, Paeng JC, Keam B, Kim TM, et al. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor. PLoS One. 2018;13(1):e0189766.Google Scholar
  95. 95.
    Bender R, Lange S. Adjusting for multiple testing—when and how? J Clin Epidemiol. 2001;54(4):343–9.Google Scholar
  96. 96.
    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.Google Scholar
  97. 97.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.Google Scholar
  98. 98.
    Alpaydin E. Introduction to machine learning. Cambridge: MIT press; 2009.Google Scholar
  99. 99.
    Hastie T, Friedman J, Tibshirani R. Model assessment and selection. In: The elements of statistical learning. Berlin: Springer; 2001. p. 193–224.Google Scholar
  100. 100.
    Kohavi R, editor. A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal: Ijcai; 1995.Google Scholar
  101. 101.
    Köppen M The curse of dimensionality. 5th Online World Conference on Soft Computing in Industrial Applications (WSC5). 2000Google Scholar
  102. 102.
    Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675.Google Scholar
  103. 103.
    Hall MA Correlation-based feature selection for machine learning. 1999Google Scholar
  104. 104.
    Misaki M, Kim Y, Bandettini PA, Kriegeskorte N. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage. 2010;53(1):103–18.Google Scholar
  105. 105.
    Van Der Maaten L, Postma E, Van den Herik J. Dimensionality reduction: a comparative. J Mach Learn Res. 2009;10:66–71.Google Scholar

Copyright information

© Korean Society of Nuclear Medicine 2019

Authors and Affiliations

  1. 1.Radiation Medicine Research InstituteSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Department of Nuclear MedicineSeoul National University HospitalSeoulSouth Korea
  3. 3.Cancer Research InstituteSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations