The Role of Nuclear Medicine in the Staging and Management of Human Immune Deficiency Virus Infection and Associated Diseases


Human immune deficiency virus (HIV) is a leading cause of death. It attacks the immune system, thereby rendering the infected host susceptible to many HIV-associated infections, malignancies and neurocognitive disorders. The altered immune system affects the way the human host responds to disease, resulting in atypical presentation of these disorders. This presents a diagnostic challenge and the clinician must use all diagnostic avenues available to diagnose and manage these conditions. The advent of highly active antiretroviral therapy (HAART) has markedly reduced the mortality associated with HIV infection but has also brought in its wake problems associated with adverse effects or drug interaction and may even modulate some of the HIV-associated disorders to the detriment of the infected human host. Nuclear medicine techniques allow non-invasive visualisation of tissues in the body. By using this principle, pathophysiology in the body can be targeted and the treatment of diseases can be monitored. Being a functional imaging modality, it is able to detect diseases at the molecular level, and thus it has increased our understanding of the immunological changes in the infected host at different stages of the HIV infection. It also detects pathological changes much earlier than conventional imaging based on anatomical changes. This is important in the immunocompromised host as in some of the associated disorders a delay in diagnosis may have dire consequences. Nuclear medicine has played a huge role in the management of many HIV-associated disorders in the past and continues to help in the diagnosis, prognosis, staging, monitoring and assessing the response to treatment of many HIV-associated disorders. As our understanding of the molecular basis of disease increases nuclear medicine is poised to play an even greater role. In this review we highlight the functional basis of the clinicopathological correlation of HIV from a metabolic view and discuss how the use of nuclear medicine techniques, with particular emphasis of F-18 fluorodeoxyglucose, may have impact in the setting of HIV. We also provide an overview of the role of nuclear medicine techniques in the management of HIV-associated disorders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Platt L, Easterbrook P, Gower E, McDonald B, Sabin K, McGowan C et al. Prevalence and burden of HCV co-infection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect Dis. 2016. doi:10.1016/S1473-3099(15)00485-5

  2. 2.

    UNAIDS. Global Statistics. UNAIDS, 2015 en/resources/campaigns/HowAIDSchangedeverything/factsheet. Accessed 1 Mar 2016.

  3. 3.

    Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993;57:183–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Torre D, Speranza F, Martegani R. Impact of highly active antiretroviral therapy on organ-specific manifestations of HIV-1 infection. HIV Med. 2005;6:66–78.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Sathekge M, Maes A, Vande WC. FDG-PET imaging in HIV infection and tuberculosis. Semin Nucl Med. 2013;43:349–66.

    Article  PubMed  Google Scholar 

  6. 6.

    Abdel-Dayem HM, Bag R, DiFabrizio L, Aras T, Turoglu HT, Kempf JS, et al. Evaluation of sequential thallium and gallium scans of the chest in AIDS patients. J Nucl Med. 1996;37:1662–7.

    CAS  PubMed  Google Scholar 

  7. 7.

    Signore A, Glaudemans AW, Rouzet GF. Imaging infection and inflammation. Biomed Res Int. 2015;2015:615150.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Quinn TC. Global burden of HIV pandemic. Lancet. 1996;348:99–106.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Scharko AM, Perlam SB, Hinds 2nd PW, Hanson JM, Uno H, Pauza CD. Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques. Proc Natl Acad Sci U S A. 1996;93:6425–30.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wallace M, Pyzalski R, Horejsh D, Brown C, Diavani M, Lu Y, et al. Whole body positron emission tomography imaging of activated lymphoid tissues during acute simian-human immunodeficiency virus 89.6PD infection in rhesus macaques. Virology. 2000;274:255–61.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Scharko AM, Perlman SB, Pyzalski RW, Graziano FM, Sosman J, Pauza CD. Whole-body positron emission tomography in patients with HIV-1 infection. Lancet. 2003;362:959–61.

    Article  PubMed  Google Scholar 

  12. 12.

    Iyengar S, Chin B, Margolick JB, Sabundayo BP, Schwartz DH. Anatomical loci of HIV-associated immune activation and association with viraemia. Lancet. 2003;362:945–50.

    Article  PubMed  Google Scholar 

  13. 13.

    Hardy G, Worrell S, Hayes P, Barnett CM, Glass D, Pido-Lopez J, et al. Evidence of thymic reconstitution after highly active antiretroviral therapy in HIV-1 infection. HIV Med. 2004;5:67–73.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Brust D, Polis M, Davey R, Hahn B, Bacharach S, Whatley M, et al. Fluorodeoxyglucose imaging in healthy subjects with HIV infection: impact of disease stage and therapy on pattern of nodal activation. AIDS. 2006;20:985–93.

    Article  PubMed  Google Scholar 

  15. 15.

    Lucignani G, Orunesu E, Cesari M, Marzo K, Pacei M, Bechi G, et al. FDG-PET imaging in HIV-infected subjects: relation with therapy and immunovirological variables. Eur J Nucl Med Mol Imaging. 2009;36:640–7.

    Article  PubMed  Google Scholar 

  16. 16.

    Sathekge M, Maes A, Kgomo M, Van de Wiele C. Fluorodeoxyglucose uptake by lymph nodes of HIV patients is inversely related to CD4 cell count. Nucl Med Commun. 2010;3:137–40.

    Article  Google Scholar 

  17. 17.

    Tanaskovic S, Fernandez S, French MA, Price RI, Song S, Robins PD, et al. Thymic tissue is not evident on high-resolution computed tomography and [18F]fluoro-deoxy-glucose positron emission tomography scans of aviraemic HIV patients with poor recovery of CD4+ T cells. AIDS. 2011;25:1235–7.

    Article  PubMed  Google Scholar 

  18. 18.

    Lelièvre JD, Melica G, Itti E, Lacabaratz C, Rozlan S, Wiedemann A, et al. Initiation of c-ART in HIV-1 infected patients is associated with a decrease of the metabolic activity of the thymus evaluated using FDG-PET/computed tomography. J Acquir Immune Defic Syndr. 2012;61:56–63.

    Article  PubMed  Google Scholar 

  19. 19.

    Liu Y. Clinical significance of diffusely increased splenic uptake on FDG-PET. Nucl Med Commun. 2009;30:763–9.

    Article  PubMed  Google Scholar 

  20. 20.

    Politikos I, Boussiotis VA. The role of the thymus in T-cell immune reconstitution after umbilical cord transplantation. Blood. 2014;124:3201–11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr. 2003;32:527–33.

    Article  PubMed  Google Scholar 

  22. 22.

    Davison JM, Subramaniam RM, Surasi DS, Cooley T, Mercier G, Peller PJ. FDG PET/CT in patients with HIV. AJR Am J Roentgenol. 2011;197:284–94.

    Article  PubMed  Google Scholar 

  23. 23.

    Bedimo R. Non-AIDS-defining malignancies among HIV-infected patients in the highly active antiretroviral therapy era. Curr HIV/AIDS Rep. 2008;5:140–9.

    Article  PubMed  Google Scholar 

  24. 24.

    Frisch M, Biggar RJ, Engels EA, Goedert JJ. Association of cancer with AIDS-related immunosuppression in adults. JAMA. 2001;285:1736–45.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Bonnet F, Chêne G. Evolving epidemiology of malignancies in HIV. Curr Opin Oncol. 2008;20:534–40.

    Article  PubMed  Google Scholar 

  26. 26.

    Powles T, Robinson D, Stebbing J, Shamash J, Nelson M, Gazzard B, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2009;27:884–90.

    Article  PubMed  Google Scholar 

  27. 27.

    Crum-Cianflone N, Hullsiek KH, Marconi V, Weintrob A, Ganesan A, Barthel RV, et al. Trends in the incidence of cancers among HIV-infected persons and the impact of antiretroviral therapy: a 20-year cohort study. AIDS. 2009;23:41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mayor AM, Gómez MA, Ríos-Olivares E, Hunter-Mellado RF. AIDS-defining neoplasm prevalence in a cohort of HIV-infected patients, before and after highly active antiretroviral therapy. Ethn Dis. 2008;18(2 Suppl 2):S2–189–94.

  29. 29.

    Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92:1500–10.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Moodley M, Mould S. Invasive cervical cancer and human immunodeficiency virus (HIV) infection in KwaZulu-Natal. S Afr J Obstet Gynaecol. 2005;25:706–10.

    CAS  Article  Google Scholar 

  31. 31.

    Engels EA, Pfeiffer RM, Goedert JJ, Virgo P, McNeel TS, Scoppa SM, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20:1645–54.

    Article  PubMed  Google Scholar 

  32. 32.

    Franceschi S, Lise M, Clifford GM, Rickenbach M, Levi F, Maspoli M, et al. Changing patterns of cancer incidence in the early- and late-HAART periods: the Swiss HIV Cohort Study. Swiss HIV Cohort Study. Br J Cancer. 2010;103:416–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Rabkin CS, Yellin F. Cancer incidence in a population with a high prevalence of infection with human immunodeficiency virus type 1. J Natl Cancer Inst. 1994;86:1711–6.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Adler DH. The impact of HAART on HPV-related cervical disease. Curr HIV Res. 2010;8:493–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Einstein MH, Phaëton R. Issues in cervical cancer incidence and treatment in HIV. Curr Opin Oncol. 2010;22:449–55.

    Article  PubMed  Google Scholar 

  36. 36.

    Grigsby PW. Role of PET in gynecologic malignancy. Curr Opin Oncol. 2009;21:420–4.

    Article  PubMed  Google Scholar 

  37. 37.

    Kidd EA, El Naqa I, Siegel BA, Dehdashti F, Grigsby PW. FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecol Oncol. 2012;127:136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Diamond C, Taylor TH, Aboumrad T, Anton-Culver H. Changes in acquired immunodeficiency syndrome-related non-Hodgkin lymphoma in the era of highly active antiretroviral therapy: incidence, presentation, treatment, and survival. Cancer. 2006;106:128–35.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Engels EA, Pfeiffer RM, Landgren O, Moore RD. Immunologic and virologic predictors of AIDS-related non-hodgkin lymphoma in the highly active antiretroviral therapy era. J Acquir Immune Defic Syndr. 2010;54:78–84.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Guiguet M, Boué F, Cadranel J, Lang JM, Rosenthal E, Costagliola D. Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study. Clinical Epidemiology Group of the FHDH-ANRS CO4 cohort. Lancet Oncol. 2009;10:1152–9.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Guech-Ongey M, Simard EP, Anderson WF, Engels EA, Bhatia K, Devesa SS, et al. AIDS-related Burkitt lymphoma in the United States: what do age and CD4 lymphocyte patterns tell us about etiology and/or biology? Blood. 2010;116:5600–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gabarre J, Raphael M, Lepage E, Martin A, Oksenhendler E, Xerri L, et al. Human immunodeficiency virus-related lymphoma: relation between clinical features and histologic subtypes. Am J Med. 2001;111:704–11.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Forsyth PA, DeAngelis LM. Biology and management of AIDS-associated primary CNS lymphomas. Hematol Oncol Clin North Am. 1996;10:1125–34.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Jhanwar YS, Straus DJ. The role of PET in lymphoma. J Nucl Med. 2006;47:1326–34.

    PubMed  Google Scholar 

  45. 45.

    Aoki Y, Tosato G. Neoplastic conditions in the context of HIV-1 infection. Curr HIV Res. 2004;2:343–9.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Villringer K, Jäger H, Dichgans M, Ziegler S, Poppinger J, Herz M, et al. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr. 1995;19:532–6.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol. 2005;130:662–70.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med. 1993;34:567–75.

    CAS  PubMed  Google Scholar 

  49. 49.

    Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS. 1996;7:337–46.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med. 1997;38:1575–83.

    PubMed  Google Scholar 

  51. 51.

    Blum KA, Lozanski G, Byrd JC. Blood. 2004;104:3009–20.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Schwartz EJ, Dorfman RF, Kohler S. Human herpesvirus-8 latent nuclear antigen-1 expression in endemic Kaposi sarcoma: an immunohistochemical study of 16 cases. Am J Surg Pathol. 2003;27:1546–50.

    Article  PubMed  Google Scholar 

  53. 53.

    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–9.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D. The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med. 1996;2:918–24.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Bower M, Palmieri C, Dhillon T. AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis. 2006;19:14–9.

    Article  PubMed  Google Scholar 

  56. 56.

    Krown SE, Testa MA, Huang J. AIDS-related Kaposi’s sarcoma: prospective validation of the AIDS Clinical Trials Group staging classification. AIDS Clinical Trials Group Oncology Committee. J Clin Oncol. 1997;15:3085–92.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    van de Luijtgaarden A, van der Ven A, Leenders W, Kaal S, Flucke U, Oyen W, et al. Imaging of HIV-associated Kaposi sarcoma; F-18-FDG-PET/CT and In-111-bevacizumabscintigraphy. J Acquir Immune Defic Syndr. 2010;54:444–6.

    Article  PubMed  Google Scholar 

  58. 58.

    Morooka M, Ito K, Kubota K, Minamimoto R, Shida Y, Hasuo K, et al. Whole-body 18F-fluorodeoxyglucose positron emission tomography/computed tomography images before and after chemotherapy for Kaposi sarcoma and highly active antiretrovirus therapy. Jpn J Radiol. 2010;28:759–62.

    Article  PubMed  Google Scholar 

  59. 59.

    Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood. 2000;95:1406–12.

    CAS  PubMed  Google Scholar 

  60. 60.

    Barker R, Kazmi F, Stebbing J, Ngan S, Chinn R, Nelson M, et al. FDG-PET/CT imaging in the management of HIV-associated multicentric Castleman’s disease. Eur J Nucl Med Mol Imaging. 2009;36:648–52.

    Article  PubMed  Google Scholar 

  61. 61.

    Durack DT, Street AC. Fever of unknown origin--reexamined and redefined. Curr Clin Top Infect Dis. 1991;11:35–51.

    CAS  PubMed  Google Scholar 

  62. 62.

    Knockaert DC, Vanderschueren S, Blockmans D. Fever of unknown origin in adults: 40 years on. J Intern Med. 2003;253:263–75.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Schacker T, Collier AC, Hughes J, Shea T, Corey L. Clinical and epidemiologic features of primary HIV infection. Ann Intern Med. 1996;125:257–64.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    De Munter P, Peetermans WE, Derdelinckx I, Vanderschueren S, Van Wijngaerden E. Fever in HIV-infected patients: less frequent but still complex. Acta Clin Belg. 2012;67:276–81.

    PubMed  Google Scholar 

  65. 65.

    Koopmans PP, Burger DM. Managing drug reactions to sulfonamides and other drugs in HIV infection: desensitization rather than rechallenge? Pharm World Sci. 1998;20:253–7.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Castaigne C, Tondeur M, de Wit S, Hildebrand M, Clumeck N, Dusart M. Clinical value of FDG-PET/CT for the diagnosis of human immunodeficiency virus-associated fever of unknown origin: a retrospective study. Nucl Med Commun. 2009;30:41–7.

    Article  PubMed  Google Scholar 

  67. 67.

    Martin C, Castaigne C, Tondeur M, Flamen P, De Wit S. Role and interpretation of fluorodeoxyglucose-positron emission tomography/computed tomography in HIV-infected patients with fever of unknown origin: a prospective study. HIV Med. 2013;14:455–62.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Glaudemans AW, Signore A. FDG-PET/CT in infections: the imaging method of choice? Eur J Nucl Med Mol Imaging. 2010;37:1986–91.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Ankrah AO, van de Werf TS, de Vries EF, Dierckx RA, Sathekge MM, Glaudemans AW. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Trans Imaging. 2016;4:131–41.

    Article  Google Scholar 

  70. 70.

    Vorster M, Sathekge MM, Bomanji J. Advances in imaging of tuberculosis: the role of 18F-FDG PET and PET/CT. Curr Opin Pulm Med. 2014;20:287–93.

    Article  PubMed  Google Scholar 

  71. 71.

    Ankrah AO, Sathekge MM, Dierckx RA, Glaudemans AW. Imaging fungal infections in children. Clin Transl Imaging. 2016;4:57–72.

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Glaudemans AW, de Vries EF, Vermeulen LE, Slart RH, Dierckx RA, Signore A. A large retrospective single-centre study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99mTc-HMPAO-labelled leucocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging. 2013;40:1760–9.

    Article  PubMed  Google Scholar 

  73. 73.

    Haas H, Petrik M, Decristoforo C. An iron-mimicking, Trojan horse-entering fungi—has the time come for molecular imaging of fungal infections? PLoS Pathog. 2015;11:e1004568.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Beckerman C, Bitran J. Gallium-67 scanning in the clinical evaluation of human immunodeficiency virus infection: indication and limitations. Semin Nucl Med. 1988;18:273–86.

    Article  Google Scholar 

  75. 75.

    Ebenhan T, Zeevart JR, Venter JD, Govender T, Kruger GH, Jarvis NV, et al. Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid ubiquicidin as a radioligand for PET infection imaging. J Nucl Med. 2014;55:308–14.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Kumar V, Boddeti DK. (68) Ga-radiopharmaceuticals for PET imaging of infection and inflammation. Recent Results Cancer Res. 2013;194:189–219.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Sathekge M, McFarren A, Dadachova E. Role of nuclear medicine in neuroHIV: PET, SPECT, and beyond. Nucl Med Commun. 2014;35:792–6.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Woods SP, Moore DJ, Weber E, Grant I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev. 2009;19:152–68.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Sacktor N. The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol. 2002;8(Suppl 2):115–21.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    McArthur JC, Brew BJ. HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS. 2010;24:1367–70.

    Article  PubMed  Google Scholar 

  81. 81.

    Rottenberg DA, Sidtis JJ, Strother SC, Schaper KA, Anderson JR, Nelson MJ, et al. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med. 1996;37:1133–41.

    CAS  PubMed  Google Scholar 

  82. 82.

    Rottenberg DA, Moeller JR, Strother SC, Sidtis JJ, Navia BA, Dhawan V, et al. The metabolic pathology of the AIDS dementia complex. Ann Neurol. 1987;22:700–6.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    van Gorp WG, Mandelkern MA, Gee M, Hinkin CH, Stern CE, Paz DK, et al. Cerebral metabolic dysfunction in AIDS: findings in a sample with and without dementia. J Neuropsychiatry Clin Neurosci. 1992;4:280–7.

    Article  PubMed  Google Scholar 

  84. 84.

    Hinkin CH, van Gorp WG, Mandelkern MA, Gee M, Satz P, Holston S, et al. Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography. J Neuropsychiatry Clin Neurosci. 1995;7:180–7.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    von Giesen HJ, Antke C, Hefter H, Wenserski F, Seitz RJ, Arendt G. Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol. 2000;57:1601–7.

    Google Scholar 

  86. 86.

    Ances BM, Christensen JJ, Teshome M, Taylor J, Xiong C, Aldea P. Cognitively unimpaired HIV-positive subjects do not have increased 11C-PiB: a case–control study. Neurology. 2010;75:111–5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, et al. 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol. 2012;69:72–7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007;72:148–51.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Bartels AL, Leenders KL. Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord. 2007;22:1852–6.

    Article  PubMed  Google Scholar 

  90. 90.

    Samuelsson K, Pirskanen-Matell R, Bremmer S, Hindmarsh T, Nilsson BY, Persson HE. The nervous system in early HIV infection: a prospective study through 7 years. Eur J Neurol. 2006;13:283–91.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Scheller C, Arendt G, Nolting T, Antke C, Sopper S, Maschke M, et al. Increased dopaminergic neurotransmission in therapy-naive asymptomatic HIV patients is not associated with adaptive changes at the dopaminergic synapses. J Neural Transm (Vienna). 2010;117:699–705.

    CAS  Article  Google Scholar 

  92. 92.

    Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353:2093–9.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Behrens GM, Stoll M, Schmidt RE. Lipodystrophy syndrome in HIV infection: what is it, what causes it and how can it be managed? Drug Saf. 2000;23:57–76.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Bleeker-Rovers CP, van der Ven AJ, Zomer B, de Geus-Oei LF, Smits P, Corstens FH, et al. F-18-fluorodeoxyglucose positron emission tomography for visualization of lipodystrophy in HIV-infected patients. AIDS. 2004;18:2430–2.

    PubMed  Google Scholar 

  95. 95.

    Sathekge M, Maes A, Kgomo M, Stolz A, Ankrah A, Van de Wiele C. Evaluation of glucose uptake by skeletal muscle tissue and subcutaneous fat in HIV-infected patients with and without lipodystrophy using FDG-PET. Nucl Med Commun. 2010;31:311–4.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Warwick JM, Sathekge MM. PET/CT scanning with a high HIV/AIDS prevalence. Transfus Apher Sci. 2011;44:167–72.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Kingsley LA, Cuervo-Rojas J, Muñoz A, Palella FJ, Post W, Witt MD, et al. Subclinical coronary atherosclerosis, HIV infection and antiretroviral therapy: Multicenter AIDS Cohort Study. AIDS. 2008;22:1589–99.

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Hoh CK. Clinical use of FDG PET. Nucl Med Biol. 2007;34:737–42.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32(1):47–59.

    Article  PubMed  Google Scholar 

  100. 100.

    Fox JJ, Strauss HW. One step closer to imaging vulnerable plaque in the coronary arteries. J Nucl Med. 2009;50:497–500.

    Article  PubMed  Google Scholar 

  101. 101.

    Yarasheski KE, Laciny E, Overton ET, Reeds DN, Harrod M, Baldwin S, et al. 18FDG PET-CT imaging detects arterial inflammation and early atherosclerosis in HIV-infected adults with cardiovascular disease risk factors. J Inflamm (Lond). 2012;9:26.

    CAS  Article  Google Scholar 

  102. 102.

    Subramanian S, Tawakol A, Burdo TH, Abbara S, Wei J, Vijayakumar J, et al. Arterial inflammation in patients with HIV. JAMA. 2012;308:379–86.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Tawakol A, Lo J, Zanni MV, Marmarelis E, Ihenachor EJ, MacNabb M, et al. Increased arterial inflammation relates to high-risk coronary plaque morphology in HIV-infected patients. J Acquir Immune Defic Syndr. 2014;66:164–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mike Sathekge.

Ethics declarations



Conflict of Interest

Alfred O. Ankrah, Andor W.J.M. Glaudemans, Hans C Klein, Rudi A.J.O. Dierckx and Mike M. Sathekge declare that they have no conflict of interest.

Ethical Statement

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and the national regulations and also with the principles of the 1964 Declaration of Helsinki and its later amendments as required for a review article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ankrah, A.O., Glaudemans, A.W.J.M., Klein, H.C. et al. The Role of Nuclear Medicine in the Staging and Management of Human Immune Deficiency Virus Infection and Associated Diseases. Nucl Med Mol Imaging 51, 127–139 (2017).

Download citation


  • Nuclear medicine
  • HIV-associated malignancies
  • HIV-associated infections
  • HIV-associated neurocognitive disease