Skip to main content

Advertisement

Log in

The Relationship Between Estrogen Receptor, Progesterone Receptor and Human Epidermal Growth Factor Receptor 2 Expression of Breast Cancer and the Retention Index in Dual Phase 18F-FDG PET/CT

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study investigates the correlation of retention index (RI) using the dual phase FDG PET/CT scan with the breast cancer biomarkers.

Methods

A total of 55 patients with breast cancer underwent dual phase FDG PET/CT scans (60 and 120 min after FDG injection) before treatment. SUVmax and SUVmean of the primary breast tumors were measured, then the percent change of SUVmax and SUVmean between the two scans were calculated, and denoted as RImax and RImean, respectively. After the surgical resection of the breast tumor, the status of biomarkers (ER, PR, and HER-2) was evaluated in the postsurgical specimen.

Results

RImean was significantly higher in ER (−) (median, 16.2; IQR, 10.8–21.0) or HER-2 (+) (median, 16.1; IQR, 10.7–21.6) tumors than in ER (+) tumors (median, 9.9; IQR, 5.5–15.3) or HER-2 (−) tumors (median, 10.5; IQR, 5.5–16.1). However, there were no significant differences of SUVmax or RImax according to the ER or HER-2 status. There were no significant differences of any PET parameters between PR (+) and PR (−) tumors. Based off ROC curve analyses, RImean predicted the ER (+) tumors (AUC, 0.699; p = 0.006), and HER-2 (+) tumors (AUC, 0.674; p = 0.022), but not the PR (+) tumors. However, neither SUVmax nor RImax predicted ER (+), PR (+), or HER-2 (+) tumors.

Conclusions

Retention index of SUVmean can reflect the ER and HER-2 status of breast cancers. Higher retention index of SUVmean might associate with lower ER expression and higher HER-2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jung KW, Won YJ, Kong HJ, Oh CM, et al. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat. 2013;45(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahn SH. Korean Breast Cancer S. Clinical characteristics of breast cancer patients in Korea in 2000. Arch Surg. 2004;139(1):27–30. discussion 31.

    Article  PubMed  Google Scholar 

  3. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40.

    Article  CAS  PubMed  Google Scholar 

  4. Sariego J, Zrada S, Byrd M, Matsumoto T. Breast cancer in young patients. Am J Surg. 1995;170(3):243–5.

    Article  CAS  PubMed  Google Scholar 

  5. Harris L, Fritsche H, Mennel R, Norton L, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25(33):5287–312.

    Article  CAS  PubMed  Google Scholar 

  6. Groheux D, Giacchetti S, Rubello D, Al-Nahhas A, et al. The evolving role of PET/CT in breast cancer. Nucl Med Commun. 2010;31(4):271–3.

    Article  PubMed  Google Scholar 

  7. Danforth Jr DN, Aloj L, Carrasquillo JA, Bacharach SL, et al. The role of 18F-FDG-PET in the local/regional evaluation of women with breast cancer. Breast Cancer Res Treat. 2002;75(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  8. Groheux D, Moretti JL, Baillet G, Espie M, et al. Effect of (18)F-FDG PET/CT imaging in patients with clinical Stage II and III breast cancer. Int J Radiat Oncol Biol Phys. 2008;71(3):695–704.

    Article  PubMed  Google Scholar 

  9. Fuster D, Duch J, Paredes P, Velasco M, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008;26(29):4746–51.

    Article  PubMed  Google Scholar 

  10. Schwarz-Dose J, Untch M, Tiling R, Sassen S, et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol. 2009;27(4):535–41.

    Article  PubMed  Google Scholar 

  11. Couturier O, Jerusalem G, N’Guyen JM, Hustinx R. Sequential positron emission tomography using [18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res. 2006;12(21):6437–43.

    Article  CAS  PubMed  Google Scholar 

  12. Baba S, Isoda T, Maruoka Y, Kitamura Y, et al. Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med. 2014;55(5):736–42.

    Article  CAS  PubMed  Google Scholar 

  13. Riedl CC, Slobod E, Jochelson M, Morrow M, et al. Retrospective analysis of 18F-FDG PET/CT for staging asymptomatic breast cancer patients younger than 40 years. J Nucl Med. 2014;55(10):1578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med. 1995;36(10):1766–74.

    CAS  PubMed  Google Scholar 

  15. Crippa F, Seregni E, Agresti R, Chiesa C, et al. Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med. 1998;25(10):1429–34.

    Article  CAS  PubMed  Google Scholar 

  16. Avril N, Menzel M, Dose J, Schelling M, et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001;42(1):9–16.

    CAS  PubMed  Google Scholar 

  17. Buck A, Schirrmeister H, Kuhn T, Shen C, et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging. 2002;29(10):1317–23.

    Article  CAS  PubMed  Google Scholar 

  18. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002;20(2):379–87.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Chauhan A, Zhuang H, Chandra P, et al. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006;98(3):267–74.

    Article  PubMed  Google Scholar 

  20. Gil-Rendo A, Martinez-Regueira F, Zornoza G, Garcia-Velloso MJ, et al. Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg. 2009;96(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia Vicente AM, Castrejon AS, Relea Calatayud F, Munoz AP, et al. 18F-FDG retention index and biologic prognostic parameters in breast cancer. Clin Nucl Med. 2012;37(5):460–6.

    Article  PubMed  Google Scholar 

  22. Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E. Dual time point FDG-PET/CT imaging… Potential tool for diagnosis of breast cancer. Clin Radiol. 2008;63(11):1213–27.

    Article  CAS  PubMed  Google Scholar 

  23. Mavi A, Urhan M, Yu JQ, Zhuang H, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med. 2006;47(9):1440–6.

    PubMed  Google Scholar 

  24. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42(9):1412–7.

    CAS  PubMed  Google Scholar 

  25. Houseni M, Chamroonrat W, Zhuang J, Gopal R, et al. Prognostic implication of dual-phase PET in adenocarcinoma of the lung. J Nucl Med. 2010;51(4):535–42.

    Article  PubMed  Google Scholar 

  26. Chen HH, Lee BF, Su WC, Lai YH, et al. The increment in standardized uptake value determined using dual-phase 18F-FDG PET is a promising prognostic factor in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2013;40(10):1478–85.

    Article  CAS  PubMed  Google Scholar 

  27. Lyshchik A, Higashi T, Nakamoto Y, Fujimoto K, et al. Dual-phase 18F-fluoro-2-deoxy-D-glucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging. 2005;32(4):389–97.

    Article  PubMed  Google Scholar 

  28. Xi Y, Guo R, Hu J, Zhang M, et al. 18F-fluoro-2-deoxy-D-glucose retention index as a prognostic parameter in patients with pancreatic cancer. Nucl Med Commun. 2014;35(11):1112–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sanghera B, Wong WL, Lodge MA, Hain S, et al. Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun. 2005;26(10):861–7.

    Article  PubMed  Google Scholar 

  30. Abgral R, Le Roux PY, Rousset J, Querellou S, et al. Prognostic value of dual-time-point 18F-FDG PET-CT imaging in patients with head and neck squamous cell carcinoma. Nucl Med Commun. 2013;34(6):551–6.

    Article  CAS  PubMed  Google Scholar 

  31. Cheang MC, Chia SK, Voduc D, Gao D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimoda W, Hayashi M, Murakami K, Oyama T, et al. The relationship between FDG uptake in PET scans and biological behavior in breast cancer. Breast Cancer. 2007;14(3):260–8.

    Article  PubMed  Google Scholar 

  33. Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med. 2012;53(7):1041–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindstrom LS, Karlsson E, Wilking UM, Johansson U, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;30(21):2601–8.

    Article  PubMed  Google Scholar 

  35. Slamon DJ, Clark GM, Wong SG, Levin WJ, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  36. Higashi T, Saga T, Nakamoto Y, Ishimori T, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43(2):173–80.

    CAS  PubMed  Google Scholar 

  37. Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J. 2004;377(Pt 2):347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006;25(34):4777–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groheux D, Giacchetti S, Moretti JL, Porcher R, et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38(3):426–35.

    Article  PubMed  Google Scholar 

  40. Heudel P, Cimarelli S, Montella A, Bouteille C, et al. Value of PET-FDG in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol. 2010;15(6):588–93.

    Article  PubMed  Google Scholar 

  41. Mavi A, Cermik TF, Urhan M, Puskulcu H, et al. The effects of estrogen, progesterone, and C-erbB-2 receptor states on 18F-FDG uptake of primary breast cancer lesions. J Nucl Med. 2007;48(8):1266–72.

    Article  CAS  PubMed  Google Scholar 

  42. Ekmekcioglu O, Aliyev A, Yilmaz S, Arslan E, et al. Correlation of 18F-fluorodeoxyglucose uptake with histopathological prognostic factors in breast carcinoma. Nucl Med Commun. 2013;34(11):1055–67.

    Article  CAS  PubMed  Google Scholar 

  43. Borst GR, Belderbos JS, Boellaard R, Comans EF, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer. 2005;41(11):1533–41.

    Article  PubMed  Google Scholar 

  44. Lee JR, Madsen MT, Bushnel D, Menda Y. A threshold method to improve standardized uptake value reproducibility. Nucl Med Commun. 2000;21(7):685–90.

    Article  CAS  PubMed  Google Scholar 

  45. Lim I, Noh WC, Park J, Park JA, et al. The combination of FDG PET and dynamic contrast-enhanced MRI improves the prediction of disease-free survival in patients with advanced breast cancer after the first cycle of neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2014;41(10):1852–60.

    Article  CAS  PubMed  Google Scholar 

  46. Basu S, Chen W, Tchou J, Mavi A, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer. 2008;112(5):995–1000.

    Article  CAS  PubMed  Google Scholar 

  47. Chen YM, Huang G, Sun XG, Liu JJ, et al. Optimizing delayed scan time for FDG PET: comparison of the early and late delayed scan. Nucl Med Commun. 2008;29(5):425–30.

    Article  PubMed  Google Scholar 

  48. Chen CJ, Lee BF, Yao WJ, Cheng L, et al. Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR Am J Roentgenol. 2008;191(2):475–9.

    Article  PubMed  Google Scholar 

  49. Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E, et al. Breast cancer with low FDG uptake: characterization by means of dual-time point FDG-PET/CT. Eur J Radiol. 2009;70(3):530–8.

    Article  PubMed  Google Scholar 

  50. Boerner AR, Weckesser M, Herzog H, Schmitz T, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med. 1999;26(3):226–30.

    Article  CAS  PubMed  Google Scholar 

  51. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, et al. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35(8):1308–12.

    CAS  PubMed  Google Scholar 

  52. Kumar R, Loving VA, Chauhan A, Zhuang H, et al. Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med. 2005;46(11):1819–24.

    PubMed  Google Scholar 

  53. Lowe VJ, Duhaylongsod FG, Patz EF, Delong DM, et al. Pulmonary abnormalities and PET data analysis: a retrospective study. Radiology. 1997;202(2):435–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zaha DC. Significance of immunohistochemistry in breast cancer. World J Clin Oncol. 2014;5(3):382–92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Perou CM, Sorlie T, Eisen MB, van de Rijn M, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  56. Sorlie T, Perou CM, Tibshirani R, Aas T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chung CH, Bernard PS, Perou CM. Molecular portraits and the family tree of cancer. Nat Genet. 2002;32(Suppl):533–40.

    Article  CAS  PubMed  Google Scholar 

  58. Sorlie T, Tibshirani R, Parker J, Hastie T, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldhirsch A, Wood WC, Coates AS, Gelber RD, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22(8):1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Establishment Center for PET Application Technology Development of the Korea Institute of Radiological and Medical Sciences (KIRAMS) and by a grant from the Ministry of Education, Science, and Technology (50441-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Moo Lim.

Ethics declarations

Conflict of Interest

Hansol Moon, Woo Chul Noh, Hyun-Ah Kim, Eun-Kyu Kim, Ko Woon Park, Seung Sook Lee, Joon Ho Choi, Kyung Woo Han, Byung Hyun Byun, Ilhan Lim, Byung Il Kim, Chang Woon Choi, and Sang Moo Lim declare that they have no conflict of interest.

Ethical Statement

This study was approved by the Institutional Review Board at Korea Cancer Center Hospital (IRB No.K-1412-002-009), and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Acquisition of informed consent was exempted by the board because of the retrospective nature of the study. Details that might disclose the identity of the subjects was omitted. All authors declare that the submitted work and its essential substance have not previously been published and are not being considered for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, H., Noh, W.C., Kim, HA. et al. The Relationship Between Estrogen Receptor, Progesterone Receptor and Human Epidermal Growth Factor Receptor 2 Expression of Breast Cancer and the Retention Index in Dual Phase 18F-FDG PET/CT. Nucl Med Mol Imaging 50, 246–254 (2016). https://doi.org/10.1007/s13139-016-0412-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-016-0412-2

Keywords

Navigation