Abstract
Purpose
Bone metastasis is an important factor for the treatment and prognosis of breast cancer patients. Whole-body bone scintigraphy (WBBS) can evaluate skeletal metastases, and 18F-FDG PET/CT seems to exhibit high specificity and accuracy in detecting bone metastases. However, there is a limitation of 18F-FDG PET in assessing sclerotic bone metastases because some lesions may be undetectable. Recent studies showed that 18F-fluoride PET/CT is more sensitive than WBBS in detecting bone metastases. This study aims to evaluate the usefulness of 18F-fluoride PET/CT by comparing it with WBBS and 18F-FDG PET/CT in breast cancer patients with osteosclerotic skeletal metastases.
Materials and Methods
Nine breast cancer patients with suspected bone metastases (9 females; mean age ± SD, 55.6 ± 10.0 years) underwent 99mTc-MDP WBBS, 18F-FDG PET/CT and 18F-fluoride PET/CT. Lesion-based analysis of five regions of the skeletons (skull, vertebral column, thoracic cage, pelvic bones and long bones of extremities) and patient-based analysis were performed.
Results
18F-fluoride PET/CT, 18F-FDG PET/CT and WBBS detected 49, 20 and 25 true metastases, respectively. Sensitivity, specificity, positive predictive value and negative predictive value of 18F-fluoride PET/CT were 94.2 %, 46.3 %, 57.7 % and 91.2 %, respectively. Most true metastatic lesions on 18F-fluoride PET/CT had osteosclerotic change (45/49, 91.8 %), and only four lesions showed osteolytic change. Most lesions on 18F-FDG PET/CT also demonstrated osteosclerotic change (17/20, 85.0 %) with three osteolytic lesions. All true metastatic lesions detected on WBBS and 18F-FDG PET/CT were identified on 18F-fluoride PET/CT.
Conclusion
18F-fluoride PET/CT is superior to WBBS or 18F-FDG PET/CT in detecting osteosclerotic metastatic lesions. 18F-fluoride PET/CT might be useful in evaluating osteosclerotic metastases in breast cancer patients.
This is a preview of subscription content, access via your institution.



References
Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Altekruse SF, et al. SEER Cancer Statistics Review 1975–2009 (Vintage 2009 Populations). Bethesda, MD, National Cancer Institute. Available at:http://seer.cancer.gov/csr/1975_2009_pops09/. posted to the SEER web site 2012.
Khatcheressian JL, Wolff AC, Smith TJ, Grunfeld E, Muss HB, Vogel VG, et al. American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol. 2006;24:5091–7.
Davis MA, Jones AL. Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med. 1976;6:19–31.
Bombardieri E, Buscombe J, Lucignani G, Schober O. Advances in Nuclear Oncology: Diagnosis and Therapy. 1st ed. London: Informa Healthcare; 2007. p. 399–400.
Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O. The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer. 2006;107:2545–51.
Jeon TJ. 18F-Fluoride-PET in skeletal imaging. Nucl Med Mol Imaging. 2009;43:253–8.
Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18F-FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–9.
Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.
Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.
Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.
Park-Holohan SJ, Blake GM, Fogelman I. Quantitative studies of bone using 18F-fluoride and 99mTc-methylene diphosphonate: evaluation of renal and whole-blood kinetics. Nucl Med Commun. 2001;22:1037–44.
ICRP. ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Stockholm: Elsevier; 1987. p. 17.
ICRP. ICRP publication 80: radiation dose to patients from radiopharmaceuticals. Stockholm: Elsevier; 1999. p. 75.
Brix G, Lechel U, Glatting G, Ziegler SI, Munzing W, Muller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.
Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.
Kang JY, Lee WW, So Y, Lee BC, Kim SE. Clinical usefulness of 18F-fluoride bone PET. Nucl Med Mol Imaging. 2010;44:55–61.
Hetzel M, Arslandemir C, Konig HH, Buck AK, Nussle K, Glatting G, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:2206–14.
Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–4.
Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.
Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F, et al. 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32:168–76.
Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22:2942–53.
Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45:272–8.
Petren-Mallmin M, Andreasson I, Ljunggren O, Ahlstrom H, Bergh J, Antoni G, et al. Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol. 1998;27:72–6.
Theriault RL, Hortobagyi GN. Bone metastasis in breast cancer. Anticancer Drugs. 1992;3:455–62.
Du Y, Cullum I, Illidge TM, Ell PJ. Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol. 2007;25(23):3440–7.
Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology. 2005;237:627–34.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yoon, SH., Kim, K.S., Kang, S.Y. et al. Usefulness of 18F-fluoride PET/CT in Breast Cancer Patients with Osteosclerotic Bone Metastases. Nucl Med Mol Imaging 47, 27–35 (2013). https://doi.org/10.1007/s13139-012-0178-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13139-012-0178-0
Keywords
- 18F-fluoride
- 18F-NaF
- PET/CT
- Breast cancer
- Skeletal metastases