Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing

Abstract

The numerical treatment of propagating fractures as embedded discontinuities is a challenging task for which an analyst has to select a suitable numerical method from a range of options. Since their inception in the mid-80s, smeared approaches for fracture simulation such as non-local damage, gradient damage or more lately phase-field modelling have steadily gained popularity. One of the appeals of a smeared implicit fracture representation, the ability to handle complex topologies with unknown crack paths in relatively coarse meshes as well as multiple-crack interaction and multiphysics, is a fundamental requirement for the numerical simulation of hydraulic fracturing in complex situations which is technically more difficult to achieve with many other methods. However, in hydraulic fracturing simulations, not only the prediction of the fracture path but also the computation of fracture width and propagation pressure (frac pressure) is crucial for reliable and meaningful applications of the simulation tool; how to determine some of these quantities in smeared representations is not immediately obvious. In this study, two of the most popular smeared approaches of recent, namely non-local damage and phase-field models, and an approach in which the solution space is locally enriched to capture a strong discontinuity combined with a cohesive-zone model are verified against fundamental hydraulic fracture propagation problems in the toughness-dominated regime. The individual theoretical foundations of each approach are discussed and differences in the treatment of physical and numerical properties of the methods when applied to the same physical problems are highlighted through examples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Using the sign convention of solid mechanics.

  2. 2.

    This constraint can also be added to the functional and its Lagrange multiplier turns out to be exactly the pressure (Chukwudozie 2016).

  3. 3.

    Observe the linear degradation of stiffness in comparison to the quadratic formulation used in the phase-field formulation. Consequences of this choice have been discussed in de Borst and Verhoosel (2016b) where gradient-damage and phase-field models were compared. For links on non-local integral formulations and gradient-damage models, the reader is referred to Kuhl et al. (2000) and references therein.

  4. 4.

    This assumption is chosen here for simplicity as it is valid in all subsequent test cases. In the more general case, boundary integrals need to be evaluated.

  5. 5.

    In terms of the stress intensity factor, \(K_\mathrm {IC} = \left( E' G_\mathrm {c} \right) ^{1/2}\), it is given as \(p_c =K_\mathrm {IC}/\sqrt{\pi a_0}\).

References

  1. Alessi, R., Marigo, J.J., Vidoli, S.: Gradient damage models coupled with plasticity: variational formulation and main properties. Mech. Mater. 80(PB), 351–367 (2015). https://doi.org/10.1016/j.mechmat.2013.12.005

    Article  Google Scholar 

  2. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015). https://doi.org/10.1007/s00466-015-1151-4. arXiv:1011.1669v3

    MathSciNet  Article  MATH  Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990). https://doi.org/10.1002/cpa.3160430805

    MathSciNet  Article  MATH  Google Scholar 

  4. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Unione Mat. Ital. 7, 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009). https://doi.org/10.1016/j.jmps.2009.04.011

    Article  MATH  Google Scholar 

  6. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel (1997)

    Google Scholar 

  7. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical Report ANL-95/11—Revision 3.8, Argonne National Laboratory (2017a). http://www.mcs.anl.gov/petsc

  8. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page (2017b). http://www.mcs.anl.gov/petsc, http://www.mcs.anl.gov/petsc

  9. Bazant, P.Z., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Google Scholar 

  10. Bažant, Z.P.: Why continuum damage is nonlocal: micromechanics arguments. J. Eng. Mech. 117(5), 1070–1087 (1991)

    Google Scholar 

  11. Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)

    MATH  Google Scholar 

  12. Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58(12), 1873–1905 (2003)

    MATH  Google Scholar 

  13. Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Model. Simul. Mater. Sci. Eng. 17(4), 043001 (2009)

    Google Scholar 

  14. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    MATH  Google Scholar 

  15. Böger, L., Keip, M.A., Miehe, C.: Minimization and saddle-point principles for the phase-field modeling of fracture in hydrogels. Comput. Mater. Sci. 138, 474–485 (2017)

    Google Scholar 

  16. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012). https://doi.org/10.1016/j.cma.2012.01.008

    MathSciNet  Article  MATH  Google Scholar 

  17. Bouchard, P.O., Bay, F., Chastel, Y., Tovena, I.: Crack propagation modelling using an advanced remeshing technique. Comput. Methods Appl. Mech. Eng. 189(3), 723–742 (2000)

    MATH  Google Scholar 

  18. Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000). https://doi.org/10.1016/S0022-5096(99)00028-9

    MathSciNet  Article  MATH  Google Scholar 

  19. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Bourdin, B., Chukwudozie, C., Yoshioka, K.: A variational approach to the numerical simulation of hydraulic fracturing. In: Proceedings of the 2012 SPE Annual Technical Conference and Exhibition, vol. SPE 159154 (2012)

  21. Bourdin, B., Marigo, J.J., Maurini, C., Sicsic, P.: Morphogenesis and propagation of complex cracks induced by thermal shocks. Phys. Rev. Lett. 112, 014301 (2014). https://doi.org/10.1103/PhysRevLett.112.014301

    Article  Google Scholar 

  22. Brace, W., Paulding, B., Scholz, C.: Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 71(16), 3939–3953 (1966)

    Google Scholar 

  23. Braides, A.: Approximation of Free-Discontinuity Problems. Springer, Berlin (1998)

    Google Scholar 

  24. Branco, R., Antunes, F., Costa, J.: A review on 3D-FE adaptive remeshing techniques for crack growth modelling. Eng. Fract. Mech. 141, 170–195 (2015)

    Google Scholar 

  25. Budyn, E., Zi, G., Moës, N., Belytschko, T.: A method for multiple crack growth in brittle materials without remeshing. Int. J. Numer. Methods Eng. 61(10), 1741–1770 (2004)

    MATH  Google Scholar 

  26. Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. J. Appl. Mech. 70(1), 10–17 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Chukwudozie, C.: Application of the variational fracture model to hydraulic fracturing in poroelastic media. Dissertation, Louisiana State University (2016)

  28. Davila, C., Camanho, P., de Moura, M.: Mixed-mode decohesion elements for analyses of progressive delamination. In: 19th AIAA Applied Aerodynamics Conference, p. 1486 (2001)

  29. de Borst, R., Verhoosel, C.V.: Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput. Methods Appl. Mech. Eng. 312, 78–94 (2016a)

    MathSciNet  Google Scholar 

  30. de Borst, R., Verhoosel, C.V.: Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput. Methods Appl. Mech. Eng. 312, 78–94 (2016b)

    MathSciNet  Google Scholar 

  31. Dean, R.H., Schmidt, J.H.: Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator. SPEJ (2009). https://doi.org/10.2118/116470-PA

    Google Scholar 

  32. Desmorat, R., Gatuingt, F., Jirásek, M.: Nonlocal models with damage-dependent interactions motivated by internal time. Eng. Fract. Mech. 142, 255–275 (2015)

    Google Scholar 

  33. Detournay, E.: Mechanics of hydraulic fractures. Annu. Rev. Fluid Mech. 48, 311–339 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Diederichs, M.: Manuel rocha medal recipient rock fracture and collapse under low confinement conditions. Rock Mech. Rock Eng. 36(5), 339–381 (2003)

    Google Scholar 

  35. Duarte, C.A., Reno, L., Simone, A.: A high-order generalized fem for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72(3), 325–351 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Duddu, R., Waisman, H.: A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput. Mech. 51(6), 961–974 (2013)

    MATH  Google Scholar 

  37. Economides, M.J., Nolte, E.K.G.: Reservoir Stimulation, vol. 2. Wiley, New York (2000)

    Google Scholar 

  38. Elices, M., Guinea, G., Gomez, J., Planas, J.: The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002)

    Google Scholar 

  39. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998). https://doi.org/10.1016/S0022-5096(98)00034-9

    MathSciNet  Article  MATH  Google Scholar 

  40. Freddi, F., Royer-Carfagni, G.: Regularized variational theories of fracture: a unified approach. J. Mech. Phys. Solids (2010). https://doi.org/10.1016/j.jmps.2010.02.010

    MathSciNet  MATH  Google Scholar 

  41. Fries, T.P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 68(13), 1358–1385 (2006)

    MATH  Google Scholar 

  42. Fries, T.P., Schätzer, M., Weber, N.: XFEM-simulation of hydraulic fracturing in 3D with emphasis on stress intensity factors. In: Oñate, E. Oliver, J., Huerta, A. (eds.) 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI) (2014)

  43. Garagash, D.I.: Plane-strain propagation of a fluid-driven fracture during injection and shut-in: asymptotics of large toughness. Eng. Fract. Mech. 73(4), 456–481 (2006). https://doi.org/10.1016/j.engfracmech.2005.07.012

    Article  Google Scholar 

  44. Gasser, T.C., Holzapfel, G.A.: Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput. Methods Appl. Mech. Eng. 194(25–26), 2859–2896 (2005)

    MATH  Google Scholar 

  45. Giovanardi, B., Scotti, A., Formaggia, L.: A hybrid XFEM-phase field (xfield) method for crack propagation in brittle elastic materials. Comput. Methods Appl. Mech. Eng. 320, 396–420 (2017)

    MathSciNet  Google Scholar 

  46. Gordeliy, E., Peirce, A.: Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput. Methods Appl. Mech. Eng. 253, 305–322 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Gupta, P., Duarte, C.A.: Particle shape effect on macro-and micro behaviours of monodisperse ellipsoids. Int. J. Numer. Anal. Methods Geomech. 38, 1397–1430 (2014). https://doi.org/10.1002/nag.732

    Article  Google Scholar 

  48. He, W., Wu, Y.F., Xu, Y., Fu, T.T.: A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects. Comput. Methods Appl. Mech. Eng. 297, 371–391 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Heider, Y., Markert, B.: Simulation of hydraulic fracture of porous materials using the phase-field modeling approach. Pamm 16(1), 447–448 (2016). https://doi.org/10.1002/pamm.201610212

    Article  Google Scholar 

  50. Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr. Res. 6(6), 773–781 (1976)

    Google Scholar 

  51. Hoek, E., Martin, C.: Fracture initiation and propagation in intact rock—a review. J. Rock Mech. Geotech. Eng. 6(4), 287–300 (2014)

    Google Scholar 

  52. Ji, J., Settari, A., Sullivan, R.: A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. SPE J. (2009). https://doi.org/10.2118/110845-PA

    Google Scholar 

  53. Jiang, L., Sainoki, A., Mitri, H.S., Ma, N., Liu, H., Hao, Z.: Influence of fracture-induced weakening on coal mine gateroad stability. Int. J. Rock Mech. Min. Sci. 88, 307–317 (2016). https://doi.org/10.1016/j.ijrmms.2016.04.017

    Article  Google Scholar 

  54. Jirásek, M.: Comparison of nonlocal models for damage and fracture. LSC Report 98(02) (1998)

  55. Johnson, L., Marschall, P., Zuidema, P., Gribi, P.: Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay. Technical Report, National Cooperative for the Disposal of Radioactive Waste (NAGRA) (2004)

  56. Karma, A., Kessler, D.A., Levine, H.: Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 3–6 (2001). https://doi.org/10.1103/PhysRevLett.87.045501

    Article  Google Scholar 

  57. Khoei, A.R.: Extended Finite Element Method: Theory and Applications. Wiley, London (2014)

    Google Scholar 

  58. Khoei, A., Moslemi, H., Sharifi, M.: Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive FE technique. Int. J. Solids Struct. 49(17), 2334–2348 (2012)

    Google Scholar 

  59. Klinsmann, M., Rosato, D., Kamlah, M., McMeeking, R.M.: An assessment of the phase field formulation for crack growth. Comput. Methods Appl. Mech. Eng. 294(Supplement C), 313–330 (2015). https://doi.org/10.1016/j.cma.2015.06.009

    MathSciNet  Article  MATH  Google Scholar 

  60. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J., Fischer, T., Görke, U., Kalbacher, T., Kosakowski, G., McDermott, C., et al.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67(2), 589–599 (2012)

    Google Scholar 

  61. Kuhl, E., Ramm, E., de Borst, R.: An anisotropic gradient damage model for quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 183(1), 87–103 (2000)

    MATH  Google Scholar 

  62. Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–3634 (2010). https://doi.org/10.1016/j.engfracmech.2010.08.009. (computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross)

    Article  Google Scholar 

  63. Kuhn, C., Lohkamp, R., Schneider, F., Aurich, J.C., Mueller, R.: Finite element computation of discrete configurational forces in crystal plasticity. Int. J. Solids Struct. 56, 62–77 (2015)

    Google Scholar 

  64. Lee, S., Wheeler, M.F., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 312, 509–541 (2016). https://doi.org/10.1016/j.cma.2016.02.037

    MathSciNet  Article  MATH  Google Scholar 

  65. Legarth, B., Huenges, E., Zimmermann, G.: Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int. J. Rock Mech. Min. Sci. 42(7–8), 1028–1041 (2005)

    Google Scholar 

  66. Lemaitre, J., Chaboche, J.L., Benallal, A., Desmorat, R.: Mécanique des matériaux solides-3eme édition. Dunod (2009)

  67. Li, T., Marigo, J.J., Guilbaud, D., Potapov, S.: Gradient damage modeling of brittle fracture in an explicit dynamic context. Int. J. Numer. Methods Eng. 00(March), 1–25 (2016). https://doi.org/10.1002/nme

    MathSciNet  Article  Google Scholar 

  68. Marigo, J.J., Maurini, C., Pham, K.: An overview of the modelling of fracture by gradient damage models. Meccanica 51(12), 3107–3128 (2016). https://doi.org/10.1007/s11012-016-0538-4

    MathSciNet  Article  MATH  Google Scholar 

  69. Meschke, G., Leonhart, D.: A generalized finite element method for hydro-mechanically coupled analysis of hydraulic fracturing problems using space–time variant enrichment functions. Comput. Methods Appl. Mech. Eng. 290, 438–465 (2015)

    MathSciNet  MATH  Google Scholar 

  70. Meschke, G., Dumstorff, P., Fleming, W.: Variational extended finite element model for cohesive cracks: influence of integration and interface law. In: IUTAM Symposium on Discretization Methods for Evolving Discontinuities, pp. 283–301. Springer (2007)

  71. Meyer, A., Rabold, F., Scherzer, M.: Efficient finite element simulation of crack propagation. Preprintreihe des Chemnitzer SFB 393 (2004)

  72. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010). https://doi.org/10.1002/nme.2861

    MathSciNet  Article  MATH  Google Scholar 

  73. Miehe, C., Mauthe, S., Teichtmeister, S.: Minimization Principles for the Coupled Problem of Darcy–Biot-Type Fluid Transport in Porous Media Linked to Phase Field Modeling of Fracture, vol. 82. Elsevier, Amsterdam (2015). https://doi.org/10.1016/j.jmps.2015.04.006

    MathSciNet  Google Scholar 

  74. Miehe, C., Aldakheel, F., Raina, A.: Phase Field Modeling of Ductile Fracture at Finite Strains: A Variational Gradient-extended Plasticity-damage Theory, vol 84. Elsevier, Amsterdam(2016). https://doi.org/10.1016/j.ijplas.2016.04.011

    Google Scholar 

  75. Minkley, W., Brückner, D., Lüdeling, C.: Tightness of salt rocks and fluid percolation. In: 45. Geomechanik-Kolloqium, Freiberg, Germany (2016)

  76. Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)

    Google Scholar 

  77. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    MathSciNet  MATH  Google Scholar 

  78. Morita, N., Black ,A.D., Guh, G.F.: Theory of Lost Circulation Pressure. SPE Annual Technical Conference and Exhibition, 23-26 September, New Orleans, Louisiana (1990). https://doi.org/10.2118/20409-MS

  79. Murakami, S.: Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, vol. 185. Springer, Berlin (2012)

    Google Scholar 

  80. Nagel, T., Görke, U.J., Moerman, K.M., Kolditz, O.: On advantages of the kelvin mapping in finite element implementations of deformation processes. Environ. Earth Sci. 75(11), 1–11 (2016). https://doi.org/10.1007/s12665-016-5429-4

    Article  Google Scholar 

  81. Nagel, T., Minkley, W., Böttcher, N., Naumov, D., Görke, U.J., Kolditz, O.: Implicit numerical integration and consistent linearization of inelastic constitutive models of rock salt. Comput. Struct. 182, 87–103 (2017)

    Google Scholar 

  82. Nedjar, B.: On a concept of directional damage gradient in transversely isotropic materials. Int. J. Solids Struct. 88, 56–67 (2016)

    Google Scholar 

  83. Needleman, A.: An analysis of decohesion along an imperfect interface. Int. J. Fract. 42(1), 21–40 (1990a)

    Google Scholar 

  84. Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990b)

    Google Scholar 

  85. Nguyen, G.D., Houlsby, G.T.: Non-local damage modelling of concrete: a procedure for the determination of model parameters. Int. J. Numer. Anal. Methods Geomech. 31(7), 867–891 (2007)

    MATH  Google Scholar 

  86. Nguyen, O., Repetto, E., Ortiz, M., Radovitzky, R.: A cohesive model of fatigue crack growth. Int. J. Fract. 110(4), 351–369 (2001)

    Google Scholar 

  87. Nguyen, G.D., Korsunsky, A.M., Belnoue, J.P.H.: A nonlocal coupled damage-plasticity model for the analysis of ductile failure. Int. J. Plast. 64, 56–75 (2015)

    Google Scholar 

  88. Oliver, J.: On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. Int. J. Solids Struct. 37(48–50), 7207–7229 (2000)

    MathSciNet  MATH  Google Scholar 

  89. Oliver, J., Huespe, A.E., Pulido, M., Chaves, E.: From continuum mechanics to fracture mechanics: the strong discontinuity approach. Eng. Fract. Mech. 69(2), 113–136 (2002)

    Google Scholar 

  90. Parisio, F., Laloui, L.: Plastic-damage modeling of saturated quasi-brittle shales. Int. J. Rock Mech. Min. Sci. 93, 295–306 (2017)

    Google Scholar 

  91. Parisio, F., Samat, S., Laloui, L.: Constitutive analysis of shale: a coupled damage plasticity approach. Int. J. Solids Struct. 75, 88–98 (2015)

    Google Scholar 

  92. Parisio, F., Tarokh, A., Makhnenko, R., Naumov, D., Miao, X.Y., Kolditz, O., Nagel, T.: Experimental characterization and numerical modelling of fracture processes in granite. Int. J. Solids Struct. (2018a, in press). https://doi.org/10.1016/j.ijsolstr.2018.12.019

    Google Scholar 

  93. Parisio, F., Vilarrasa, V., Laloui, L.: Hydro-mechanical modeling of tunnel excavation in anisotropic shale with coupled damage-plasticity and micro-dilatant regularization. Rock Mech. Rock Eng. (2018b) https://doi.org/10.1007/s00603-018-1569-z

    Google Scholar 

  94. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39(19), 3391–3403 (1996)

    MATH  Google Scholar 

  95. Pham, K., Amor, H., Marigo, J.J., Maurini, C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20(4), 618–652 (2011). https://doi.org/10.1177/1056789510386852

    Article  Google Scholar 

  96. Rice, J.: The Mechanics of Earthquake Rupture. Division of Engineering, Brown University, Providence (1979)

    Google Scholar 

  97. Roth, S.N., Léger, P., Soulaïmani, A.: Coupled hydro-mechanical cracking of concrete using XFEM in 3D. In: Saouma, V, Bolander, J., Landis, E. (eds.) 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9 (2016)

  98. Santillán, D., Juanes, R., Cueto-Felgueroso, L.: Phase field model of fluid-driven fracture in elastic media: immersed-fracture formulation and validation with analytical solutions. J. Geophys. Res. Solid Earth 122(4), 2565–2589 (2017). https://doi.org/10.1002/2016JB013572

    Article  Google Scholar 

  99. Silani, M., Talebi, H., Hamouda, A.M., Rabczuk, T.: Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. J. Comput. Sci. 15, 18–23 (2016)

    Google Scholar 

  100. Sneddon, I., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. The SIAM Series in Applied Mathematics. Wiley, London (1969)

    Google Scholar 

  101. Tanné, E., Li, T., Bourdin, B., Marigo, J.J., Maurini, C.: Crack nucleation in variational phase-field models of brittle fracture. J. Mech. Phys. Solids 110(Supplement C), 80–99 (2018). https://doi.org/10.1016/j.jmps.2017.09.006

    MathSciNet  Article  Google Scholar 

  102. Turon, A., Davila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Google Scholar 

  103. Vtorushin, E.: Application of mixed finite elements to spatially non-local model of inelastic deformations. GEM-Int. J. Geomath. 7(2), 183–201 (2016)

    MathSciNet  MATH  Google Scholar 

  104. Watanabe, N., Wang, W., Taron, J., Görke, U., Kolditz, O.: Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. Int. J. Numer. Methods Eng. 90(8), 1010–1034 (2012). https://doi.org/10.1002/nme.3353/full

    MathSciNet  Article  MATH  Google Scholar 

  105. Wheeler, M., Wick, T., Wollner, W.: An augmented-lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Eng. 271(Supplement C), 69–85 (2014). https://doi.org/10.1016/j.cma.2013.12.005

    MathSciNet  Article  MATH  Google Scholar 

  106. Wilson, Z.A., Landis, C.M.: Phase-field modeling of hydraulic fracture. J. Mech. Phys. Solids 96, 264–290 (2016). https://doi.org/10.1016/j.jmps.2016.07.019

    MathSciNet  Article  Google Scholar 

  107. Yoshioka, K., Bourdin, B.: A variational hydraulic fracturing model coupled to a reservoir simulator. Int. J. Rock Mech. Min. Sci. 88(Supplement C), 137–150 (2016). https://doi.org/10.1016/j.ijrmms.2016.07.020

    Article  Google Scholar 

  108. Zhang, Z., Guazzato, M., Sornsuwan, T., Scherrer, S.S., Rungsiyakull, C., Li, W., Swain, M.V., Li, Q.: Thermally induced fracture for core-veneered dental ceramic structures. Acta Biomater. 9(9), 8394–8402 (2013)

    Google Scholar 

  109. Zhang, X., Vignes, C., Sloan, S.W., Sheng, D.: Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Comput. Mech. 59(5), 737–752 (2017). https://doi.org/10.1007/s00466-017-1373-8

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr.-Ing. Thomas Frühwirt and Prof. Dr.-Ing. habil. Heinz Konietzky from the Institute of Geotechnics, Chair of Rock Mechanics at the TU Bergakademie Freiberg for providing us with the material properties of the local gneiss. The authors gratefully acknowledge the funding provided by the German Federal Ministry of Education and Research (BMBF) for the GeomInt project, Grant Number 03G0866A, as well as the support of the Project Management Jülich (PtJ). The contribution of F.P. was financed by the GEMex project. The GEMex project is supported by the European Union’s Horizon 2020 programme for Research and Innovation under Grant Agreement No 727550.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Nagel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Rescaling of the phase-field energy functional (non-dimensionalization)

The scaling of Eq. (23) to achieve a non-dimensional format proceeds as follows. Let \(\psi _0\), \(x_0\), \(u_0\), and \(\tau _0 =p_0\) be scaling factors, and

$$\begin{aligned} \psi&= \psi _0\tilde{\psi } \end{aligned}$$
(71)
$$\begin{aligned} {\mathbf {x}}&= x_0\tilde{{\mathbf {x}}} \end{aligned}$$
(72)
$$\begin{aligned} {\mathbf {u}}&= u_0\tilde{{\mathbf {u}}} \end{aligned}$$
(73)
$$\begin{aligned} p&= p_0\tilde{p} \end{aligned}$$
(74)
$$\begin{aligned} \bar{{\mathbf {t}}}&= \tau _0\tilde{{\mathbf {t}}} \quad \mathrm {and} \quad \varrho {\mathbf {b}} = \tau _0\tilde{\varrho {\mathbf {b}}} \end{aligned}$$
(75)

where \(\tilde{()}\) is a dimensionless variable. Thus, Eq. (23) becomes

$$\begin{aligned} \begin{aligned} E(\mathbf {u},d,p)&= \psi _0 u_0^{2} x_0^{n-2} \int _{\varOmega } d^{2} \tilde{\psi }^{+}(\tilde{\mathbf {u}})+\tilde{\psi }^{-}(\tilde{\mathbf {u}})\, \mathrm {d}\varOmega -\tau _0 x_0^{n-1} u_0 \int _{\partial _{\mathrm {N}} \varOmega } \tilde{\mathbf {t}}\cdot \tilde{\mathbf {u}} \, \mathrm {d}\varGamma -\\&\quad - \tau _0 x_0^{n-1} u_0 \int _\varOmega \tilde{\varrho {\mathbf {b}}}\cdot \tilde{\mathbf {u}} \, \mathrm {d}\varOmega + x_0^{n-1} \frac{G_\mathrm {c}}{4c_w} \int _\varOmega \left( \frac{w(d)}{\ell } + \ell \left| \nabla d \right| ^{2} \right) \, \mathrm {d}\varOmega \\&\quad + p_0 x_0^{n-1} u_0 \int _\varOmega \tilde{p} \tilde{\mathbf {u}} \cdot \nabla d \, \mathrm {d}\varOmega \\ \end{aligned} \end{aligned}$$
(76)

Dividing both sides by \(\psi _0 u_0^{2} x_0^{n-2}\),

$$\begin{aligned} \begin{aligned} \tilde{E}(\tilde{\mathbf {u}},d,\tilde{p})&= \int _{\varOmega } d^{2} \tilde{\psi }^{+}(\tilde{\mathbf {u}})+\tilde{\psi }^{-}(\tilde{\mathbf {u}}) \, \mathrm {d}\varOmega -\frac{\tau _0 x_0}{u_0 \psi _0} \int _{\partial _{\mathrm {N}} \varOmega } \tilde{\mathbf {t}}\cdot \tilde{\mathbf {u}} \, \mathrm {d}\varGamma -\\&\quad - \frac{\tau _0 x_0}{u_0 \psi _0} \int _\varOmega \tilde{\varrho {\mathbf {b}}}\cdot \tilde{\mathbf {u}} \, \mathrm {d}\varOmega + \frac{G_\mathrm {c} x_0}{4c_w \psi _0 u_0^{2}} \int _\varOmega \left( \frac{w(d)}{\ell } + \ell \left| \nabla d \right| ^{2} \right) \, \mathrm {d}\varOmega \\&\quad + \frac{p_0 x_0}{u_0 \psi _0} \int _\varOmega \tilde{p} \tilde{\mathbf {u}} \cdot \nabla d \, \mathrm {d}\varOmega \\ \end{aligned} \end{aligned}$$
(77)

and setting

$$\begin{aligned} x_0= & {} \frac{\psi _0 u_0^{2}}{G_\mathrm {c}} \end{aligned}$$
(78)
$$\begin{aligned} \tau _0= & {} p_0= \frac{\psi _0 u_0}{x_0} \end{aligned}$$
(79)

yields the numerically favourable formulation

$$\begin{aligned} \begin{aligned} \tilde{E}(\tilde{\mathbf {u}},d,\tilde{p})&= \int _{\varOmega } d^{2} \tilde{\psi }^{+}(\tilde{\mathbf {u}})+\tilde{\psi }^{-}(\tilde{\mathbf {u}})\, \mathrm {d}\varOmega - \int _{\partial _{\mathrm {N}} \varOmega } \tilde{\mathbf {t}}\cdot \tilde{\mathbf {u}} \, \mathrm {d}\varGamma - \\&\quad - \int _\varOmega \tilde{\mathbf {t}}\cdot \tilde{\mathbf {u}} \, \mathrm {d}\varOmega + \frac{1}{4c_w} \int _\varOmega \left( \frac{w(d)}{\ell } + \ell \left| \nabla d \right| ^{2} \right) \, \mathrm {d}\varOmega + \int _\varOmega \tilde{p} \tilde{\mathbf {u}} \cdot \nabla d \, \mathrm {d}\varOmega \\ \end{aligned} \end{aligned}$$
(80)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, K., Parisio, F., Naumov, D. et al. Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing. Int J Geomath 10, 13 (2019). https://doi.org/10.1007/s13137-019-0126-6

Download citation

Keywords

  • Phase field method
  • Non-local damage
  • Cohesive zone models
  • Brittle fracture
  • Hydraulic fracturing
  • OpenGeoSys
  • GeomInt
  • GEMex

Mathematics Subject Classification

  • 74: Mechanics of deformable solids
  • 35: Partial differential equations
  • 65: Numerical analysis