Bakushinsky, A.: The problem of the convergence of the iteratively regularized Gauss–Newton method. Comput. Math. Math. Phys. 32, 1353–1359 (1992)
MathSciNet
Google Scholar
Berkel, P., Fischer, D., Michel, V.: Spline multiresolution and numerical results for joint gravitation and normal-mode inversion with an outlook on sparse regularisation. Int. J. Geomath. 1, 167–204 (2011)
MathSciNet
Article
Google Scholar
Bolton, S., Levin, S., Bagenal, F.: Juno’s first glimpse of Jupiter’s complexity. Geophys. Res. Lett. 44, 7663–7667 (2017). (Special Section Early Results: Juno at Jupiter)
Article
Google Scholar
Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16, 263–301 (2005)
MathSciNet
Article
Google Scholar
Cea, J.: Lectures on Optimization-Theory and Algorithms. Springer, Berlin (1978)
MATH
Google Scholar
Clauser, C.: Einführung in die Geophysik. Springer, Berlin (2014)
Book
Google Scholar
Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998)
Article
Google Scholar
Drinkwater, M., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A.: GOCE: ESA’s first Earth explorer core mission. Space Sci. Rev. 108, 419–432 (2003)
Article
Google Scholar
Driscoll, J., Healy, D.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)
MathSciNet
Article
Google Scholar
Dziewonski, A., Anderson, D.: Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)
Article
Google Scholar
Elschner, J., Yamamoto, M.: Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave. Inverse Probl. 22, 355–364 (2006)
MathSciNet
Article
Google Scholar
Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)
Book
Google Scholar
Fischer, D.: Sparse regularization of a joint inversion of gravitational data and normal mode anomalies. Ph.D. Thesis, Geomathematics Group, University of Siegen, published by Dr. Hut, München and online at http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/ (2011)
Fischer, D., Michel, V.: Sparse regularization of inverse gravimetry—case study: spatial and temporal mass variations in South America. Inverse Probl. 28, 065012 (2012)
MathSciNet
Article
Google Scholar
Fischer, D., Michel, V.: Automatic best-basis selection for geophysical tomographic inverse problems. Geophys. J. Int. 193, 1291–1299 (2013a)
Article
Google Scholar
Fischer, D., Michel, V.: Inverting GRACE gravity data for local climate effects. J. Geod. Sci. 3, 151–162 (2013b)
Google Scholar
Flechtner, F., Morton, P., Webb, F.: Status of the GRACE follow-on mission. In: Marti, U. (ed.) Gravity, Geoid and Height Systems, pp. 117–121. Springer, Cham (2014)
Google Scholar
Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press, Boca Raton (2013)
MATH
Google Scholar
Freeden, W., Michel, V.: Multiscale Potential Theory. With Applications to Geoscience. Birkhäuser, Boston (2004)
Book
Google Scholar
Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press, Oxford (1998)
MATH
Google Scholar
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.: GNU Scientific Library Reference Manual, 3rd edn. Network Theory, Bristol (2009)
Google Scholar
Gutting, M., Kretz, B., Michel, V., Telschow, R.: Study on parameter choice methods for the RFMP with respect to downward continuation. Front. Appl. Math. Stat. 3, Article 10 (2017)
Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)
MathSciNet
Article
Google Scholar
Hettlich, F., Rundell, W.: Iterative methods for the reconstruction of an inverse potential problem. Inverse Probl. 12, 251–266 (1996)
MathSciNet
Article
Google Scholar
Hettlich, F., Rundell, W.: Recovery of the support of a source term in an elliptic differential equation. Inverse Probl. 13, 959–976 (1997)
MathSciNet
Article
Google Scholar
Hettlich, F., Rundell, W.: A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37, 587–620 (2000)
MathSciNet
Article
Google Scholar
Holmes, M.: Introduction to the Foundations of Applied Mathematics. Springer, New York (2009)
Book
Google Scholar
Isakov, V.: Inverse Source Problems. American Mathematical Society, Providence (1990)
Book
Google Scholar
Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, New York (2006)
MATH
Google Scholar
Ishtiaq, A., Michel, V.: Pseudodifferential operators, cubature and equidistribution on the 3D-ball. Numer. Funct. Anal. Optim. 38, 891–910 (2017)
MathSciNet
Article
Google Scholar
Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. de Gruyter, Berlin (2008)
Book
Google Scholar
Kerningham, B., Ritchie, D.: The C Programming Language, 2nd edn. Prentice Hall, Englewood Cliffs (1988)
Google Scholar
Kontak, M.: Novel algorithms of greedy-type for probability density estimation as well as linear and nonlinear inverse problems. Ph.D. Thesis, Geomathematics Group, University of Siegen, published online at http://dokumentix.ub.uni-siegen.de/opus/volltexte/2018/1316/ (2018)
Kontak, M., Michel, V.: The Regularized Weak Functional Matching Pursuit for linear inverse problems. J Inverse Ill-Posed Probl (2018) (accepted)
Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)
MathSciNet
Article
Google Scholar
Lauricella, G.: Sulla distribuzione della massa nell’interno dei pianeti. Rend. Acc. Linei. XXI, 18–26 (1912)
MATH
Google Scholar
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)
MathSciNet
Article
Google Scholar
Leweke, S., Michel, V., Telschow, R.: On the non-uniqueness of gravitational and magnetic field data inversion (survey article). In: Freeden, W., Nashed, M. (eds.) Handbook of Mathematical Geodesy, pp. 883–919. Birkhäuser, Boston (2018)
Chapter
Google Scholar
Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11, 431–441 (1963)
MathSciNet
Article
Google Scholar
Matousek, S.: The Juno new frontiers mission. Acta Astronaut. 61, 932–939 (2007)
Article
Google Scholar
Michel, V.: Lectures on Constructive Approximation. Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, New York (2013)
MATH
Google Scholar
Michel, V.: RFMP: an iterative best basis algorithm for inverse problems in the geosciences. In: Freeden, W., Nashed, M., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn, pp. 2121–2147. Springer, Berlin (2015)
Chapter
Google Scholar
Michel, V., Fokas, A.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Probl. 24, 045019 (2008)
MathSciNet
Article
Google Scholar
Michel, V., Orzlowski, S.: On the convergence theorem for the regularized functional matching pursuit (RFMP) algorithm. Int. J. Geomath. 8, 183–190 (2017)
MathSciNet
Article
Google Scholar
Michel, V., Telschow, R.: A non-linear approximation method on the sphere. Int. J. Geomath. 5, 195–224 (2014)
MathSciNet
Article
Google Scholar
Michel, V., Telschow, R.: The regularized orthogonal functional matching pursuit for ill-posed inverse problems. SIAM J. Numer. Anal. 54, 262–287 (2016)
MathSciNet
Article
Google Scholar
Mikhlin, S.: Mathematical Physics, An Advanced Course. North-Holland, Amsterdam (1970)
MATH
Google Scholar
Novikov, P.: Sur le problème inverse du potentiel. Dokl. Akad. Nauk. 18, 165–168 (1938)
Google Scholar
OpenMP Architecture Review Board (ed) (2013) OpenMP Application Program Interface. Version 4.0. http://www.openmp.org/specifications/
Pizzetti, P.: Corpi equivalenti rispetto alla attrazione newtoniana esterna. Rom. Acc. L. Rend. XVIII, 211–215 (1909)
MATH
Google Scholar
Pizzetti, P.: Intorno alla possibli distribuzioni della massa nell’interno della terra. Ann. Mat. Milano XVII, 225–258 (1910)
Article
Google Scholar
Reigber, C., Schwintzer, P., Lühr, H.: The CHAMP geopotential mission. Boll. Geof. Teor. Appl. 40, 285–289 (1999)
Google Scholar
Rieder, A.: Keine Probleme mit inversen Problemen. Vieweg, Wiesbaden (2003)
Book
Google Scholar
Tapley, B., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004)
Article
Google Scholar
Telschow, R.: An orthogonal matching pursuit for the regularization of spherical inverse problems. Ph.D. Thesis, Geomathematics Group, University of Siegen, published 2015 by Dr. Hut, München (2014)
Tikhonov, A., Glasko, V.: Use of the regularization method in non-linear problems. USSR Comput. Math. Math. Phys. 5, 93–107 (1965)
Article
Google Scholar
Wald, A., Schuster, T.: Sequential subspace optimization for nonlinear inverse problems. J. Inverse Ill-Posed Probl. 25, 99–117 (2017)
MathSciNet
Article
Google Scholar
Weck, N.: Inverse Probleme der Potentialtheorie. Appl. Anal. 2, 195–204 (1972)
Article
Google Scholar
Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)
MATH
Google Scholar
Zuber, M., Smith, D., Lehman, D., Hoffmann, T., Asmar, S., Watkins, M.: Gravity recovery and interior laboratory (GRAIL): mapping the lunar interior from crust to core. Space Sci. Rev. 178, 3–24 (2013)
Article
Google Scholar