Acko, B., Godina, A.: Verification of the conventional measuring uncertainty evaluation model with Monte Carlo simulation. Int. J. Simul. Model. 4, 76–84 (2005)
Article
Google Scholar
Alkhatib, H., Kutterer, H.: Estimation of measurement uncertainty of kinematic TLS observation process by means of Monte-Carlo methods. J. Appl. Geod. 7, 125–133 (2013)
Google Scholar
Alkhatib, H., Schuh, W.D.: Integration of the Monte Carlo covariance estimation strategy into tailored solution procedures for large-scale least squares problems. J. Geod. 81, 53–66 (2007)
Article
MATH
Google Scholar
Alkhatib, H., Neumann, I., Kutterer, H.: Uncertainty modeling of random and systematic errors by means of Monte Carlo and fuzzy techniques. J. Appl. Geod. 3, 67–79 (2009)
Google Scholar
Arnold, S.: The Theory of Linear Models and Multivariate Analysis. Wiley, New York (1981)
MATH
Google Scholar
Baarda, W.: Statistical Concepts in Geodesy. Publications on Geodesy, Vol. 2, Nr. 4. Netherlands Geodetic Commission, Delft (1967)
Google Scholar
Baarda, W.: A Testing Procedure for Use in Geodetic Networks. Publications on Geodesy, Vol. 2, Nr. 5. Netherlands Geodetic Commission, Delft (1968)
Google Scholar
Baselga, S.: Nonexistence of rigorous tests for multiple outlier detection in least-squares adjustment. J. Surv. Eng. 137, 109–112 (2011)
Article
Google Scholar
Beckman, R., Cook, R.: Outlier....s. Technometrics 25, 119–149 (1983)
MathSciNet
MATH
Google Scholar
Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. B 36, 192–236 (1974)
MathSciNet
MATH
Google Scholar
Box, G., Muller, M.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)
Article
MATH
Google Scholar
Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
MATH
Google Scholar
Dagpunar, J.: Principles of Random Variate Generation. Clarendon Press, Oxford (1988)
MATH
Google Scholar
Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)
Book
MATH
Google Scholar
Dietrich, C.: Uncertainty, Calibration and Probability, 2nd edn. Taylor & Francis, Boca Raton (1991)
Google Scholar
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)
Article
Google Scholar
Falk, M.: A simple approach to the generation of uniformly distributed random variables with prescribed correlations. Commun. Stat. Simul. 28, 785–791 (1999)
MathSciNet
Article
MATH
Google Scholar
Gaida, W., Koch, K.R.: Solving the cumulative distribution function of the noncentral \(F\)-distribution for the noncentrality parameter. Sci. Bull. Stanisl. Staszic Univ. Min. Metall. Geod. B 90(1024), 35–44 (1985)
Google Scholar
Gelfand, A., Smith, A.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)
MathSciNet
Article
MATH
Google Scholar
Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis, 2nd edn. Chapman and Hall, Boca Raton (2004)
MATH
Google Scholar
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–6, 721–741 (1984)
Article
MATH
Google Scholar
Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. 52–21(1), 5–21 (1987)
MathSciNet
Google Scholar
Geman, D., Geman, S., Graffigne, C.: Locating texture and object boundaries. In: Devijver, P., Kittler, J. (eds.) Pattern Recognition Theory and Applications, pp. 165–177. Springer, Berlin (1987)
Chapter
Google Scholar
Gentle, J.: Random Number Generation and Monte Carlo Methods, 2nd edn. Springer, Berlin (2003)
MATH
Google Scholar
Gilks, W.: Full conditional distributions. In: Gilks, W., Richardson, S., Spiegelhalter, D. (eds.) Markov Chain Monte Carlo in Practice, pp. 75–88. Chapman and Hall, London (1996)
Google Scholar
Golub, G., van Loan, C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1984)
MATH
Google Scholar
Gordon, N., Salmond, D.: Bayesian state estimation for tracking and guidance using the bootstrap filter. J. Guidance Control Dyn. 18, 1434–1443 (1995)
Article
Google Scholar
Gundlich, B., Kusche, J.: Monte Carlo integration for quasi-linear models. In: Xu, P., Liu, J., Dermanis, A. (eds.) VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, pp. 337–344. Springer, Berlin (2008)
Chapter
Google Scholar
Gundlich, B., Koch, K.R., Kusche, J.: Gibbs sampler for computing and propagating large covariance matrices. J. Geod. 77, 514–528 (2003)
Article
MATH
Google Scholar
Guo, J.F., Ou, J.K., Yuan, Y.B.: Reliability analysis for a robust M-estimator. J. Surv. Eng. 137, 9–13 (2011)
Article
Google Scholar
Hennes, M.: Konkurrierende Genauigkeitsmaße—Potential und Schwächen aus der Sicht des Anwenders. Allg. Vermess. Nachr. 114, 136–146 (2007)
Google Scholar
Huber, P.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)
MathSciNet
Article
MATH
Google Scholar
ISO: Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, Geneve (1995)
JCGM: Evaluation of measurement data—supplement 2 to the “Guide to the expression of uncertainty in measurement”—extension to any number of output quantities. JCGM 102:2011. Joint Committee for Guides in Metrology (2011). www.bipm.org/en/publications/guides/
Kacker, R., Jones, A.: On use of Bayesian statistics to make the guide to the expression of uncertainty in measurement consistent. Metrologia 40, 235–248 (2003)
Article
Google Scholar
Kargoll, B.: On the theory and application of model misspecification tests in geodesy. Universität Bonn, Institut für Geodäsie und Geoinformation, Schriftenreihe 8, Bonn (2008)
Knight, N., Wang, J., Rizos, C.: Generalised measures of reliability for multiple outliers. J. Geod. 84, 625–635 (2010)
Article
Google Scholar
Koch, K.R.: Ausreißertests und Zuverlässigkeitsmaße. Vermess. Raumordn. 45, 400–411 (1983)
Google Scholar
Koch, K.R.: Parameter Estimation and Hypothesis Testing in Linear Models, 2nd edn. Springer, Berlin (1999)
Book
MATH
Google Scholar
Koch, K.R.: Monte-Carlo-Simulation für Regularisierungsparameter. ZfV-Z Geod. Geoinf. Landmanag. 127, 305–309 (2002)
Google Scholar
Koch, K.R.: Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods. Stud. Geophys. Geod. 49, 259–275 (2005)
Article
Google Scholar
Koch, K.R.: Gibbs sampler by sampling–importance-resampling. J. Geod. 81, 581–591 (2007a)
Article
MATH
Google Scholar
Koch, K.R.: Introduction to Bayesian Statistics, 2nd edn. Springer, Berlin (2007b)
MATH
Google Scholar
Koch, K.R.: Determining uncertainties of correlated measurements by Monte Carlo simulations applied to laserscanning. J. Appl. Geod. 2, 139–147 (2008a)
Google Scholar
Koch, K.R.: Evaluation of uncertainties in measurements by Monte Carlo simulations with an application for laserscanning. J. Appl. Geod. 2, 67–77 (2008b)
Google Scholar
Koch, K.R.: Minimal detectable outliers as measures of reliability. J. Geod. 89, 483–490 (2015)
Article
Google Scholar
Koch, K.R.: Bayesian statistics and Monte Carlo methods. J. Geod. Sci. 8 (in preparation) (2018)
Koch, K.R., Brockmann, J.: Systematic effects in laser scanning and visualization by confidence regions. J. Appl. Geod. 10(4), 247–257 (2016)
Google Scholar
Koch, K.R., Kargoll, B.: Outlier detection by the EM algorithm for laser scanning in rectangular and polar coordinate systems. J. Appl. Geod. 9, 162–173 (2015)
Google Scholar
Koch, K.R., Schmidt, M.: Deterministische und stochastische Signale. Dümmler, Bonn (1994). ftp://skylab.itg.uni-bonn.de/koch/00_textbooks/Determ_u_stoch_Signale.pdf
Koch, K.R., Kusche, J., Boxhammer, C., Gundlich, B.: Parallel Gibbs sampling for computing and propagating large covariance matrices. ZfV-Z Geod. Geoinf. Landmanag. 129, 32–42 (2004)
Google Scholar
Kok, J.: Statistical analysis of deformation problems using Baarda’s testing procedures. In: “Forty Years of Thought”. Anniversary Volume on the Occasion of Prof. Baarda’s 65th Birthday 2, 470–488 (1982). Delft
Kok, J.: On data snooping and multiple outlier testing. NOAA Technical Report NOS NGS 30. US Department of Commerce, National Geodetic Survey, Rockville (1984)
Lehmann, R.: Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models. J. Geod. 86, 1137–1146 (2012)
Article
Google Scholar
Lehmann, R.: On the formulation of the alternative hypothesis for geodetic outlier detection. J. Geod. 87, 373–386 (2013)
Article
Google Scholar
Leonard, T., Hsu, J.: Bayesian Methods. Cambridge University Press, Cambridge (1999)
MATH
Google Scholar
Liu, J.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)
MATH
Google Scholar
Marsaglia, G., Bray, T.: A convenient method for generating normal variables. SIAM Rev. 6, 260–264 (1964)
MathSciNet
Article
MATH
Google Scholar
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
Article
Google Scholar
Nowel, K.: Application of Monte Carlo method to statistical testing in deformation analysis based on robust M-estimation. Surv. Rev. 48(348), 212–223 (2016)
Article
Google Scholar
O’Hagan, A.: Bayesian Inference, Kendall’s Advanced Theory of Statistics, vol. 2B. Wiley, New York (1994)
MATH
Google Scholar
Pope, A.: The statistics of residuals and the detection of outliers. NOAA Technical Report NOS65 NGS1, US Department of Commerce, National Geodetic Survey, Rockville (1976)
Proszynski, W.: Another approach to reliability measures for systems with correlated observations. J. Geod. 84, 547–556 (2010)
Article
Google Scholar
Roberts, G., Smith, A.: Simple conditions for the convergence of the Gibbs sampler and Metropolis–Hastings algorithms. Stoch. Process. Appl. 49, 207–216 (1994)
MathSciNet
Article
MATH
Google Scholar
Rubin, D.: Using the SIR algorithm to simulate posterior distributions. In: Bernardo, J., DeGroot, M., Lindley, D., Smith, A. (eds.) Bayesian Statistics 3, pp. 395–402. Oxford University Press, Oxford (1988)
Google Scholar
Rubinstein, R.: Simulation and the Monte Carlo Method. Wiley, New York (1981)
Book
MATH
Google Scholar
Schader, M., Schmid, F.: Distribution function and percentage points for the central and noncentral F-distribution. Stat. Pap. 27, 67–74 (1986)
MATH
Google Scholar
Siebert, B., Sommer, K.D.: Weiterentwicklung des GUM und Monte-Carlo-Techniken. Tech. Messen 71, 67–80 (2004)
Article
Google Scholar
Smith, A., Gelfand, A.: Bayesian statistics without tears: a sampling-resampling perspective. Am. Stat. 46, 84–88 (1992)
MathSciNet
Google Scholar
Smith, A., Roberts, G.: Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Stat. Soc. B 55, 3–23 (1993)
MathSciNet
MATH
Google Scholar
Staff of the Geodetic Computing Center, S.: The Delft approach for the design and computation of geodetic networks. In: “Forty Years of Thought”, Anniversary Volume on the Occasion of Prof. Baarda’s 65th Birthday 1, 202–274 (1982). Delft
Teunissen, P.: Adjusting and testing with the models of the affine and similarity transformation. Manuscr. Geod. 11, 214–225 (1986)
Google Scholar
Teunissen, P.: Testing theory: an introduction. MGP, Delft University of Technology, Department of Mathematical Geodesy and Positioning, Delft (2000)
Teunissen, P., de Bakker, P.: Single-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances. J. Geod. 87, 161–177 (2013)
Article
Google Scholar
van Dorp, J., Kotz, S.: Generalized trapezoidal distributions. Metrika 58, 85–97 (2003)
MathSciNet
Article
MATH
Google Scholar
Wilks, S.: Mathematical Statistics. Wiley, New York (1962)
MATH
Google Scholar
Xu, P.: Random simulation and GPS decorrelation. J. Geod. 75, 408–423 (2001)
Article
MATH
Google Scholar