Abstract
In this paper we are especially concerned with new potential methods in exploration, useful particularly in geothermal research. Based on a physically relevant regularizing approach involving the Newtonian volume integral, we mathematically investigate the extractable information of the Earth’s gravitational potential obtained by gravimetry for both gravitational potential modeling and geological density interpretation. More explicitly, gravimetric data sets are exploited to extract and visualize geological features inherently available in signature bands of certain geological formations such as aquifers, salt domes etc.
This is a preview of subscription content, access via your institution.














References
Blick, C.: Multiscale potential methods in geothermal research: decorrelation reflected post-processing and locally based inversion. PhD thesis, Geomathematics Group, University of Kaiserslautern, Kaiserslautern (2015)
Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G Teubner, Leipzig (1999)
Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65(5), 304–317 (2013)
Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press, Taylor & Francis, Boca Raton (2013)
Freeden, W., Glockner, O., Schreiner, M.: Spherical panel clustering and its numerical aspects. J. Geod. 72, 586–599 (1998)
Freeden, W., Gutting, M.: Special functions of mathematical (geo-)physics. In: Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2013)
Freeden, W., Hesse, K.: On the multiscale solution of satellite problems by use of locally supported kernel functions corresponding to equidistributed data on spherical orbits. Stud. Sci. Math. Hung. 39, 37–74 (2002)
Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)
Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)
Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences (A Scalar, Vectorial, and Tensorial Setup). Springer, Heidelberg (2009)
Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)
Gutting, M.: Fast multipole methods for oblique derivative problems. Phd Thesis, Geomathematics Group, University of Kaiserslautern, Kaiserslautern (2008)
Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary-value problem. Int. J. Geomath. 2, 223–252 (2012)
Gutting, M.: Fast spherical/harmonic spline modeling. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 3, 2nd edn, pp. 2711–2746. Springer, New York (2015)
Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen 69, 331–371 (1910)
Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)
Hesse, K.: Domain decomposition methods in multiscale geopotential determination from SST and SGG. PhD Thesis, Geomathematics Group, University of Kaiserslautern, Kaiserslautern (2003)
Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien (2005)
Jacobs, F., Meyer, H.: Geophysik-Signale aus der Erde. B.G Teubner, Leipzig, and VDF Verlag, Zürich (1992)
Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: an elastic upgrade for marmousi. Lead. Edge 25(2), 156–166 (2006)
Michel, V.: A multiscale approximation for operator equations in separable Hilbert spaces—case study: reconstruction and description of the Earth’s interior. Habilitation Thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (2002)
Michel, V., Fokas, A.S.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Probl. 24, 045019 (2008). doi:10.1088/0266-5611/24/4/045019
Möhringer, S.: Decorrelation of gravimetric data. PhD Thesis, Geomathematics Group, University of Kaiserslautern, Kaiserslautern (2014)
Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T., et al. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn, pp. 253–289. Springer, New York (2015)
Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)
Nettleton, L.L.: Elementary Gravity and Magnetics for Geologists and Seismologists. Society of Exploration Geophysicists, Tulsa (1971)
Nettleton, L.L.: Gravity and Magnetics in Oil Prospecting. McGraw-Hill, New York (1976)
Petrini, H.: Sur l’existence des derivées secondes du potential. Comptes Rendus de l’Académie des Sciences 130, 233–235 (1900)
Stokes, G.G.: On the internal distribution of matter which shall produce a given potential at the surface of a gravitating mass. Proc. R. Soc. London 15, 482–486 (1867)
Symes, W.W.: T.R.I.P. the Rice Inversion Project. Department of Computational and Applied Mathematics, Rice University. http://www.trip.caam.rice.edu/downloads/downloads.html. Accessed 12 Sept 2016 (2014)
Torge, W.: Geodesy. de Gruyter, Berlin (1991)
Tykhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. 5, 1035–1038 (Translation from Dokl. Akad. Nauk 15, 501–504 (1963))
Acknowledgments
The authors thank the “Federal Ministry for Economic Affairs and Energy, Berlin” and the “Project Management Jülich” for funding the projects “GEOFÜND” (funding reference number: 0325512A, PI Prof. Dr. W. Freeden, University of Kaiserslautern, Germany) and ”SPE” (funding reference number: 0324061, PI Prof. Dr. W. Freeden, CBM-Gesellschaft für Consulting, Business und Management mbH, Bexbach, Germany, corporate manager Prof. Dr. mult. M. Bauer).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Blick, C., Freeden, W. & Nutz, H. Feature extraction of geological signatures by multiscale gravimetry. Int J Geomath 8, 57–83 (2017). https://doi.org/10.1007/s13137-016-0088-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13137-016-0088-x
Keywords
- Feature extraction
- Geological signatures
- Multiscale gravimetry
- Potential methods in exploration
Mathematics Subject Classification
- 31B10
- 31B20
- 86A60