The adjoint method in geodynamics: derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model

Abstract

The adjoint method is a computationally efficient way to compute the gradient of a physical observable or an associated objective function relative to its parameters. In geodynamics the observable can be thought of as a representation of the present day heterogeneity structure in the Earth’s mantle, inferred in some form through seismic imaging, while a crucial derivative of interest is that relative to an earlier convective system state. Since mantle convection is governed by coupled, non-linear conservation equations for mass, momentum and energy, computation of the derivative consists of iterative solutions to the forward and the adjoint problem, rendering the approach superior to finite difference approximations, which become impractical at the resolution of modern geodynamic models. Moreover, similarities in the forward and adjoint equations allow one to apply existing numerical codes that solve the forward problem to the adjoint equations with little adaptation. Bunge et al. (Geophys J Int 152(2):280–301 (2003)), have derived the adjoint equations for mantle convection using the concept of Lagrangian multipliers. Here we introduce a more general approach using an operator formulation in Hilbert spaces, in order to connect to recent work in seismology (Fichtner et al. Phys Earth Planet Int 157(1–2):86–104 (2006a)), where the approach was used to derive the adjoint equations for the scalar wave equation. We demonstrate the practicality of the method for use in a high resolution mantle circulation model with more than 80 million finite elements by restoring a representation of present day mantle heterogeneity derived from the global seismic shear wave study of Grand et al. (GSA Today 7(4):1–7 1997) back in time for the past 40 million years. An important result is our finding of a strong global minimum for the unknown initial condition, regardless of the assumed first guess for the initial heterogeneity structure, which we attribute to the uniqueness theorem by Serrin. Paleo mantle convection modelling will improve our ability to test assumptions about the internal structure and dynamics of the Earth’s mantle against the geologic record.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Artemieva, I.M.: The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109(1–2), 23–46 (2009)

    Article  Google Scholar 

  2. Boehler, R.: High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 1998, 221–245 (2000)

    Article  Google Scholar 

  3. Braess, D.: Finite elements: theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  4. Braun, J.: The many surface expressions of mantle dynamics. Nat. Geosci. 3(12), 825–833 (2010)

    Article  Google Scholar 

  5. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: The effect of depth dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996)

    Article  Google Scholar 

  6. Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003)

    Article  Google Scholar 

  7. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories. Philos. Trans. A. Math. Phys. Eng. Sci. 360(1800), 2545–67 (2002)

    Article  Google Scholar 

  8. Bunge, H.-P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S.P., Romanomicz, B.A.: Time scales and heterogeneous structure in geodynamic earth models. Science 280(5360), 91–95 (1998)

    Article  Google Scholar 

  9. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: Study of three-dimensional mantle convection at \(10^{8}\) Rayleigh number: Effects of depth-dependent phase change formulation. J. Geophys. Res. 102 (B6), 11991–12007 (1997)

  10. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L.C., Tan, E., Gurnis, M., Ghattas, O.: Large-scale adaptive mantle convection simulation. Geophys. J. Int. 192(3), 889–906 (2013)

    Article  Google Scholar 

  11. Conrad, C.P., Gurnis, M.: Seismic tomography, surface uplift, and the breakup of Gondwanaland: integrating mantle convection backwards in time. Geochem. Geophys. Geosyst. 4(3) (2003) . doi:10.1029/2001GC000299

  12. Davies, D.R., Goes, S., Davies, J.H., Schuberth, B.S.A., Bunge, H.-P., Ritsema, J.: Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353–354, 253–269 (2012)

    Article  Google Scholar 

  13. Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Planet. Int. 25(4), 297–356 (1981)

    Article  Google Scholar 

  14. Fichtner, A., Bleibinhaus, F., Capdeville, Y.: Full seismic waveform modelling and inversion. Springer, Berlin, Heidelberg (2011)

  15. Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: I. Theory. Phys. Earth Planet. Int. 157(1–2), 86–104 (2006a)

    Article  MATH  Google Scholar 

  16. Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology—II. Applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Int. 157(1–2), 105–123 (2006b)

    Article  MATH  Google Scholar 

  17. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comp. J. 7, 149–154 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  18. Forte, A.M., Quéré, S., Moucha, R., Simmons, N.A., Grand, S.P., Mitrovica, J.X., Rowley, D.B.: Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet. Sci. Lett. 295(3–4), 329–341 (2010)

    Article  Google Scholar 

  19. Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J., Lhuillier, F.: An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev. 155(1–4), 247–291 (2010)

    Article  Google Scholar 

  20. Freeden, W., Gervens, T., Schreiner, M.: Constructive approximation on the sphere (With applications to geomathematics). Oxford Science Publication, Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  21. Freeden, W., Maier, T., Zimmermann, S.: A survey on wavelet methods for (geo) applications. Rev. Matemática 16(1), 277–310 (2003)

  22. Freeden, W.: A General Construction Principle of Wavelets. Min. Sky 53–70 (2001)

  23. Glatzmaier, G.A.: Numerical simulations of mantle convection: time-dependent, three-dimensional, compressible, spherical shell. Geophys. Astrophys. Fluid Dyn. 43(2), 223–264 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  24. Gmeiner, B., Gradl, T., Gaspar, F., Rüde, U.: Optimization of the multigrid-convergence rate on semi-structured meshes by local Fourier analysis. Comput. Math. Appl. 65(4), 694–711 (2013)

    MathSciNet  Article  Google Scholar 

  25. Grand, S.P., van der Hilst, R.D., Widiyantoro, S.: Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7(4), 1–7 (1997)

    Google Scholar 

  26. Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Müller, R., Boyden, J., Seton, M., Manea, V.C., Bower, D.J.: Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38(1), 35–42 (2012)

    Article  Google Scholar 

  27. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13(49–52), 28 (1902)

    Google Scholar 

  28. Hager, B.H., Richards, M.A.: Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Philos. Trans. R. Soc. Lond Ser. A Math. Phys. Sci. 328(1599), 309–327 (1989)

    Article  Google Scholar 

  29. Hager, B.H., O’Connell, R.J.: Subduction zone dip angles and flow driven by plate motion. Tectonophysics 50(2–3), 111–133 (1978)

    Article  Google Scholar 

  30. Hager, B.H., O’Connell, R.J.: Kinematic models of large-scale flow in the Earth’s mantle. J. Geophys. Res. Solid Earth 84(B3), 1031–1048 (1979)

    Article  Google Scholar 

  31. Heine, C., Müller, R.D., Steinberger, B., DiCaprio, L.: Integrating deep Earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics 483(1–2), 135–150 (2010)

    Article  Google Scholar 

  32. Iaffaldano, G., Bunge, H.-P., Bücker, M.: Mountain belt growth inferred from histories of past plate convergence: a new tectonic inverse problem. Earth Planet. Sci. Lett. 260(3–4), 516–523 (2007)

    Article  Google Scholar 

  33. Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Inter. 145(1–4), 99–114 (2004)

    Article  Google Scholar 

  34. Jarvis, G.T., McKenzie, D.P.: Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96(03), 515–583 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  35. Jordan, T.H.: Composition and development of the continental tectosphere. Nature 5671, 544–548 (1978)

    Article  Google Scholar 

  36. Kress, R.: Linear integral equations. Springer, New York (1999)

  37. Li, K., Jackson, A., Livermore, P.W.: Variational data assimilation for the initial-value dynamo problem. Phys. Rev. E 84(5), 056321 (2011)

    Article  Google Scholar 

  38. Liu, L., Gurnis, M.: Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res. 113(B8), B08405 (2008)

    Google Scholar 

  39. McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062), 1136–1139 (2005)

    Article  Google Scholar 

  40. Menemenlis, D., Wunsch, C.: Linearization of an oceanic general circulation model for data assimilation and climate studies. J. Atmos. Ocean. Technol. 1995, 1420–1443 (1997)

    Article  Google Scholar 

  41. Mitrovica, J.X., Forte, A.M.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225(1–2), 177–189 (2004)

    Article  Google Scholar 

  42. Moucha, R., Forte, A.M., Mitrovica, J.X., Rowley, D.B., Quéré, S., Simmons, N.A., Grand, S.P.: Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271(1–4), 101–108 (2008a)

    Article  Google Scholar 

  43. Moucha, R., Forte, A.M., Rowley, D.B., Mitrovica, J.X., Simmons, N.A., Grand, S.P.: Mantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valley. Geology 36(6), 439 (2008b)

    Article  Google Scholar 

  44. Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R.: Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9(4), Q04006 (2008)

    Article  Google Scholar 

  45. Oeser, J., Bunge, H.-P., Mohr, M.: Cluster Design in the Earth Sciences: TETHYS. In: Gerndt, M., Kranzlmüller, D.: (eds.) High Perform. Comput. Commun., vol. 4208 of Lecture Notes in Computer Science. Springer, pp 31–40 (2006)

  46. Paulson, A., Zhong, S., Wahr, J.: Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int. 171(2), 497–508 (2007)

    Article  Google Scholar 

  47. Piazzoni, A., Steinle-Neumann, G., Bunge, H.-P., Dolejš, D.: A mineralogical model for density and elasticity of the Earth’s mantle. Geochem. Geophys. Geosyst. 8(11), (2007) . doi:10.1029/2007GC001697

  48. Richards, M.A., Engebretson, D.C.: Large-scale mantle convection and the history of subduction. Nature 355(6359), 437–440 (1992)

    Article  Google Scholar 

  49. Schuberth, B.S.A., Bunge, H.-P., Ritsema, J.: Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 10(5), (2009a) . doi:10.1029/2009GC002401

  50. Schuberth, B.S.A., Bunge, H.-P., Steinle-Neumann, G., Moder, C., Oeser, J.: Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle. Geochem. Geophys. Geosyst. 10(1), (2009b) . doi:10.1029/2008GC002235

  51. Schuberth, B.S.A., Zaroli, C., Nolet, G.: Synthetic seismograms for a synthetic Earth: long-period P- and S-wave traveltime variations can be explained by temperature alone. Geophys. J. Int. 188(3), 1393–1412 (2012)

    Article  Google Scholar 

  52. Serrin, J.: Mathematical principles of classical fluid mechanics. Handb. der Phys. VIII, 125–263 (1959)

    MathSciNet  Google Scholar 

  53. Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., Chandler, M.: Global continental and ocean basin reconstructions since 200Ma. Earth Sci. Rev. 113(3–4), 212–270 (2012)

    Article  Google Scholar 

  54. Spasojevic, S., Liu, L., Gurnis, M.: Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem. Geophys. Geosyst. 10(5), (2009) . doi:10.1029/2008GC002345

  55. Steinberger, B., O’Connell, R.: Changes of the Earth’s rotation axis owing to advection of mantle density heterogeneities. Nature 387 (6629), 169–173 (1997)

  56. Steinberger, B., O’Connell, R.: Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132 (2), 412–434 (1998)

  57. Steinle-Neumann, G., Stixrude, L., Cohen, R.E., Gülseren, O.: Elasticity of iron at the temperature of the Earth’s inner core. Nature 413(6851), 57–60 (2001)

    Article  Google Scholar 

  58. Tackley, P.J.: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth Sci. Rev. 110(1–4), 1–25 (2012)

    Article  Google Scholar 

  59. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q. J. R. Meteorol. Soc. 113(478), 1311–1328 (1987)

    Article  Google Scholar 

  60. Tarantola, A.: Linearized inversion of seismic reflection data. Geophys. Prospect. 32(6), 998–1015 (1984)

    Article  Google Scholar 

  61. Tromp, J., Tape, C., Liu, Q.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160(1), 195–216 (2005)

    Article  Google Scholar 

  62. Zhang, Z., Stixrude, L., Brodholt, J.: Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth Planet. Sci. Lett. 379, 1–12 (2013)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Horbach.

Additional information

Dedicated to Willi Freeden’s 65th Birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horbach, A., Bunge, HP. & Oeser, J. The adjoint method in geodynamics: derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model. Int J Geomath 5, 163–194 (2014). https://doi.org/10.1007/s13137-014-0061-5

Download citation

Keywords

  • Adjoint method
  • Inverse problem
  • Geodynamics
  • Seismic tomography
  • Regularisation
  • Mantle convection

Mathematics Subject Classifications

  • 65M32
  • 65N21
  • 49N45
  • 86A22
  • 86A17