Skip to main content

Regularized collocation for spherical harmonics gravitational field modeling

Abstract

Motivated by the problem of satellite gravity gradiometry, which is the reconstruction of the Earth gravity potential from the satellite data provided in the form of the second-order partial derivatives of the gravity potential at a satellite altitude, we discuss a special regularization technique for solving this severely ill-posed problem in a spherical framework. We are especially interested in the regularized collocation method. As a core ingredient we present an a posteriori parameter choice rule, namely the weighted discrepancy principle, and prove its order optimality. Finally, we illustrate our theoretical findings by numerical results for the computation of the Fourier coefficients of the gravitational potential directly from the noisy synthetic data.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bauer, F., Mathé, P., Pereverzev, S.V.: Local solutions to inverse problems in geodesy, the impact of the noise covariance structure upon the accuracy of estimation. J. Geod. 81, 39–51 (2007)

    Article  MATH  Google Scholar 

  2. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  3. Freeden, W., Pereverzev, S.: Spherical Tikhonov regularization wavelets in satellite gravity gradiometry with random noise. J. Geod. 74, 730–736 (2001)

    Article  Google Scholar 

  4. Freeden, W.: Multiscale Modeling of Spaceborne Geodata. Teubner, Stuttgart (1999)

    Google Scholar 

  5. Graf, M., Kunis, S., Potts, D.: On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harm. Anal. 27, 124–132 (2009)

    Article  MathSciNet  Google Scholar 

  6. Groetsch, C.W.: Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integr. Eqns. Oper. Theory 13, 67–75 (1999)

    Article  MathSciNet  Google Scholar 

  7. Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007)

    Google Scholar 

  8. Le Gia, Q.T., Mhaskar, H.N.: Polynomial operators and local approximation of solutions of pseudo-differential equations on the sphere. Numer. Math. 103, 299–322 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Le Gia, Q.T., Mhaskar, H.N.: Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47(1), 440–466 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lu, S., Pereverzev, S.V.: Regularization Theory for Ill-Posed Problems Selected topics. Walter de Gruyter GmbH, Boston (2013)

    Book  MATH  Google Scholar 

  11. Lu, S., Pereverzev, S.V.: Multiparameter regularization in downward continuation of satellite data. In: Handbook of Geomathematics, vol 2, pp. 813–832. Springer, Heidelberg (2010)

  12. Mathé, P., Hofmann, B.: How general are general source conditions? Inverse Probl. 24, 015009 (2008)

    Article  Google Scholar 

  13. Mathé, P., Pereverzev, S.V.: Moduli of continuity for operator valued functions. Numer. Funct. Anal. Optim. 23(56), 623–631 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Probl. 19(3), 789–803 (2003a)

    Article  MATH  Google Scholar 

  15. Mathé, P., Pereverzev, S.V.: Discretization strategy for linear ill-posed problems in variable Hilbert scales. Inverse Probl. 19(6), 1263–1277 (2003b)

    Article  MATH  Google Scholar 

  16. Mathé, P., Pereverzev, S.V.: Regularization of some linear inverse problems with discretized random noisy data. Math. Comput. 75, 1913–1929 (2006a)

    Article  MATH  Google Scholar 

  17. Mathé, P., Pereverzev, S.V.: The discretized discrepancy principle under general source conditions. J. Complex. 22, 371–381 (2006b)

    Article  MATH  Google Scholar 

  18. Nair, M.T., Pereverzev, S.V.: Regularized collocation method for Fredholm integral equations of the first kind. J. Complex. 23(46), 454–467 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An earth gravitational model to degree 2160: EGM2008. EGU General, Assembly, pp. 13–18 (2008)

  20. Pereverzev, S.V., Schock, E.: Error estimates for band-limited spherical regularization wavelets in an inverse problem of satellite geodesy. Inverse Probl. 15, 881–890 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pereverzev, S.V., Schock, E.: Morozov’s discrepancy principle for Tikhonov regularization of severely ill-posed problems in finite-dimentional subspaces. Numer. Func. Anal. Optimi. 21, 901–916 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  23. Plato, R., Vainikko, G.: On the regularization of projection methods for solving ill-posed problems. Numer. Math. 57, 63–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rajan, M.P.: Convergence analysis of a regularized approximation for solving Fredholm integral equation of the first kind. J. Math. Anal. Appl. 279, 522–530 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rebhan, H., Aguirre, M., Johannessen, J.: The gravity field and steady-state ocean circulaton explorer mission - GOCE. ESA Earth Obs. Q. 66, 6–11 (2000)

    Google Scholar 

  26. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., Wang, F.: GGM02-an improved earth gravity field model from GRACE. J. Geod. 79(8), 467–478 (2005)

    Article  Google Scholar 

  27. Tikhonov, A.N.: On the regularization of ill-posed problems. Dokl. Akad. Nauk SSSR 153, 49–52 (1963)

    MathSciNet  Google Scholar 

  28. Xu, P.L., Fukuda, Y., Liu, Y.M.: Multiple parameter regularization: numerical solutions and applications to determination of geopotential from precise satellite orbits. J. Geod. 80, 17–27 (2006)

    Article  Google Scholar 

  29. Xu, Y.: Polynomial interpolation on the unit sphere. SIAM J. Numer. Anal. 41, 751–766 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Austrian Fonds Zur Forderung der Wissenschaftlichen Forschung (FWF), Grant P25424.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavlo Tkachenko.

Additional information

Dedicated to Willi Freeden’s 65th Birthday.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naumova, V., Pereverzyev, S.V. & Tkachenko, P. Regularized collocation for spherical harmonics gravitational field modeling. Int J Geomath 5, 81–98 (2014). https://doi.org/10.1007/s13137-013-0054-9

Download citation

Keywords

  • Ill-posed problem
  • Collocation method
  • Regularization
  • Discrepancy principle
  • Satellite gravity modeling
  • Spherical harmonics

Mathematics Subject Classification (2000)

  • 65J20
  • 47A52
  • 86A30