Skip to main content
Log in

An improved version of a high accuracy surface modeling method

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

A method of surface modeling, high accuracy surface modeling (HASM), which is based on the fundamental theorem of surface theory, is modified. The earlier version of HASM is theoretically incomplete and almost performs similar or slightly better than other methods being compared in the practical applications which definitely limit its promotion. According to the fundamental theorem of surface theory, we modify HASM by adding another important nonlinear equation to solve the low accuracy in some cases and make HASM have a complete and solid theory foundation. A numerical test and a real-world example are employed to comparatively validate the effectiveness of this modification. It is found that the accuracy of the simulation result has a great improvement. Another feature of the modified version of HASM is that it is theoretically perfect since it considers the third equation of the surface theory. The modified HASM will be useful with a wide range of spatial interpolation, particularly if the focus on simulation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apaydin, H., Anli, A.S., Ozturk, F.: Evaluation of topographical and geographical effects on some climatic parameters in the Central Anatolis Region of Turkey. Int. J. Climatol. 31, 1264–1279 (2011)

    Article  Google Scholar 

  • Bjorck, A.: Iterative refinement of linear least squares solutions II. BIT 8, 8–30 (1968)

    Article  MathSciNet  Google Scholar 

  • Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithm 49, 85–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Carmo, M.P.: Differential Geometry of Curves and Surfaces. China Machine Press, Beijing (2006)

    Google Scholar 

  • Chen, C.F., Yue, T.X.: A method of DEM construction and related error analysis. Comput. Geosci. 36, 717–725 (2010)

    Article  Google Scholar 

  • Chen, C.F., Yue, T.X., Li, Y.Y.: A high speed method of SMTS. Comput. Geosci. 41, 64–71 (2012)

    Article  Google Scholar 

  • Crain, I.K.: Digital representation of topographic surface. Photogramm Eng. Remote Sens 54, 1577 (1970)

    Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Matrix Computation, Johns Hopkins Series in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1989)

  • Golub, G.H., Van Loan, C.F.: Matrix Computations. Posts & Telecom Press, Beijing (2009)

    Google Scholar 

  • Goovaerts, P.: Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89, 1–45 (1999)

    Article  Google Scholar 

  • Hancock, P.A., Hutchinson, M.F.: Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines. Environ. Model. Softw. 21, 1684–1694 (2006)

    Article  Google Scholar 

  • Hartkamp, A.D., De Beurs, K., Stein, A., White, J.W.: Interpolation techniques for climate variables. NRG-GIS Series 99-01, CIMMYT, Mexio (1999)

  • Henderson, D.W.: Differential Geometry. Prentice-Hall, London (1998)

    MATH  Google Scholar 

  • Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., Wavresky, P.: Temperature interpolation based on local information: the example of France. Int. J. Climatol. 31, 2141–2153 (2011)

    Article  Google Scholar 

  • Karniadakis, G.E.M., Kirby, I.I.R.M.: Parallel Scientific Computing in C++ and MPI. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Kurtzman, D., Kadmon, R.: Mapping of temperature variables in Isreal: a comparison of different interpolation methods. Clim. Res. 13, 33–43 (1999)

    Article  Google Scholar 

  • Li, Z.L., Zhu, Q.: Digital Elevation Model. Wuhan Technical University of Surveying and Mapping Press, Wuhan (2000)

    Google Scholar 

  • Liao, S.B., Li, Z.H.: Some practical problems related to raserization of air temperature. Meteorol. Sci. Technol. 32, 352–356 (2004) (in Chinese)

    Google Scholar 

  • Liseikin, V.D.: A Computational Differential Geometry Approach to Grid Generation. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  • Naumova, V., Pereverzyev, S.V., Sivananthan, S.: Adaptive parameter choice for one-side finite difference schemes and its application in diabetes technology. J. Complexity 28, 524–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Ninyerola, M., Pons, X., Roure, J.M.: Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. Int. J. Climatol. 27, 1231–1242 (2007)

    Article  Google Scholar 

  • Reichel, L., Rodriguez, G., Seatzu, S.: Error estimates for large-scale ill-posed problems. Numer. Algorithms 51, 341–361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta, S., Pal, D.K., Lohar, D.: Interpolation of climate variables and temperature modeling. Theor. Appl. Climatol. 107, 35–45 (2012)

    Article  Google Scholar 

  • Somasundaram, D.: Differential Geometry. Alpha Science International Ltd, Harrow (2005)

    MATH  Google Scholar 

  • Stott, J.P.: Surface Modeling by Computer. Thomas Telford Ltd for the Institution of Civil Engineers, London (1977)

    Google Scholar 

  • Su, B.Q., Hu, H.S.: Differential Geometry. People’s Education Press, Beijing (1997). (in Chinese)

    Google Scholar 

  • Toponogov, V.A.: Differential Geometry of Curves and Surfaces. Birkhaeuser Boston, New York (2006)

    Google Scholar 

  • Wang, F.: Quantitative Methods and Applications in GIS. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  • Wise, S.: GIS data modeling-lessons from the analysis of DTMs. Int. J. Geogr. Inf. Sci. 14, 313–318 (2000)

    Article  Google Scholar 

  • Yue, T.X.: Surface Modeling: High Accuracy and High Speed Methods. CRC Press, New York (2011)

    Book  Google Scholar 

  • Yue, T.X., Du, Z.P.: Numerical test for optimum formulation of high accuracy surface modeling. Geo Inf. Sci. 8, 83–87 (2006) (in Chinese)

    Google Scholar 

  • Yue, T.X., Wang, S.H.: Adjustment computation of HASM: a high-accuracy and high-speed method. Int. J. Geogr. Inf. Sci. 24, 1725–1743 (2010)

    Article  Google Scholar 

  • Yue, T.X., Du, Z.P., Song, D.J., Gong, Y.: A new method of high accuracy surface modeling and its application to DEM construction. Geomorphology 91, 161–172 (2007)

    Article  Google Scholar 

  • Yue, T.X., Chen, C.F., Li, B.L.: An adaptive method of high accuracy surface modeling and its application to simulating elevation surface. Trans. GIS 14, 615–630 (2010a)

    Article  Google Scholar 

  • Yue, T.X., Song, D.J., Du, Z.P., Wang, W.: High accuracy surface modeling and its application to DEM generation. Int. J. Remote Sens. 31, 2205–2226 (2010b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiang Yue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, N., Yue, T. & Zhao, M. An improved version of a high accuracy surface modeling method. Int J Geomath 4, 185–200 (2013). https://doi.org/10.1007/s13137-013-0051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-013-0051-z

Keywords

Mathematics Subject Classification

Navigation