Skip to main content
Log in

Statistically-based approach for monitoring of micro-seismic events

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

We consider the problem of optimal statistical estimation of micro-seismic source parameters using multichannel data from surface arrays of seismometers affected by a strong seismic noise. The problem is treated as a statistical task of parameter estimation for a general type multidimensional linear model with random or completely unknown input time functions. The maximum-likelihood generic estimators are derived and their relationship with the well-known seismic emission tomography (SET) algorithm is established. The proposed estimation algorithms perform processing of multichannel discrete observations in the frequency domain and can be implemented in on-line mode. Using the method of successive independent trials (Monte-Carlo), we demonstrate that a proposed statistical estimation algorithm provides much higher accuracy of the micro-seismic event source location in real noise conditions than the widely used SET algorithm and, as a consequence, is more reliable in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Symbols \(\overline{1,m}\) denote the set of all integers with values between 1 and m.

  2. We call a “segment” of the stationary time series \(\eta _k, \; k\in \mathbb Z \), the set of this time series values with indexes \(k\) belonging to the discrete time interval \(k\in \overline{1,n} \).

References

  • Aki, K., Richards, R.: Quantitative Seismology. University Science Books, CA, USA (2002)

    Google Scholar 

  • Bartlett, M.S.: An inverse matrix adjustment, arising in discriminant analysis. Ann. Math. Stat. 22(1), 107–111 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Math. Stat. 38(5), 2916–2957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Brandstein, M., Ward, D. (eds.): Microphone Arrays. Springer, Berlin (2001)

  • Brigham, E.O.: The Fast Fourier Transform and its Applications. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  • Brillinger D.: Time series. Data Analysis and Theory. Holt, Reinhart and Winston, Inc., New York (1975)

  • Capon, J., Greenfield, R.J., Kolker, R.J.: Multidimensional maximum-likelihood processing of a large aperture seismic array. Proc. IEEE 55(2), 192–211 (1967)

    Article  Google Scholar 

  • Champeney, D.C.: A Handbook of Fourier Theorems. Cambridge University Press, Cambridge (1987)

  • Devis, R.D.: Asymptotic inference on stationary Gaussian time series. Adv. Apl. Prob. 5, 469–497 (1973)

    Article  Google Scholar 

  • Duncan, P.M., Lakings, J.D., Flores, R.A.: Method for passive seismic emission tomography. US Patent #7,663,970 (2010)

  • Duncan, P., Eisner, L.: Reservoir characterization using surface micro-seismic monitoring. Geophysics 75, 139–146 (2010)

    Article  Google Scholar 

  • Eisner, L., Williams-Stroud, S., Hill, A., Duncan, P., Thornton, M.: Beyond the dots in the box: microseismicity-constrained fracture models for reservoir simulation. Lead. Edge 29(2), 326–333 (2010)

    Article  Google Scholar 

  • Graybill, F.A.: Matrices with Applications in Statistics, 2nd edn. Wadsworth International Group, Belmont, California (1983)

    MATH  Google Scholar 

  • Hannan, E.J.: Multiple Time Series Analysis. John Willey and Sons, Inc., New York (1970)

    Book  Google Scholar 

  • Haykin, S.: Array Signal Processing. Prentice-Hall, Inc., Englewood Cliffs (1985)

    MATH  Google Scholar 

  • Husebye, E., Dainty, A. (eds.): Monitoring a Comprehensive Test Ban Treaty. Kluwer Academic Publishers, Dortrecht (1995)

  • Ibragimov, I.A., Has’minskii, R.Z.: Statistical Estimation, Asymptotic Theory. Applications of Mathematics, vol. 16, Springer, New York (1981)

  • Kiselevitch, V.L., Nikolaev, A.V., Troitskiy, P.A., Shubik, B.M.: Emission tomography: main ideas, results, and prospects. In: Proceedings of the 61st annual international meeting, SEG, expanded abstracts, 1602 (1991)

  • Kushnir A.F., Rozhkov M.B., Tagizade, T.T.: Method for determination of microseismic source coordinates. Patent N 2451307 (2012a) (In Russian)

  • Kushnir A.F., Rozhkov, M.V., Varypaev A.V., Dricker I.G.: Evaluation of location capabilities of statistically optimal algorithms for microseismic monitoring. In: Proceedings of the 74th conference and exhibition, EAGE, extended abstracts, P025 (2012b)

  • Kushnir, A.F., Pinsky, V.I.: Asymptotically Efficient Estimation of Linear Systems Parameters. I. Local Asymptotic Normality. Mathematical methods in seismology and geodynamics (Computational seismology, 19), pp. 101–118. Nauka, Moscow (1986) (In Russian)

  • Kushnir, A.F.: Algorithms for linear systems identification in case of correlated noise at input and output. Probl. Inf. Trans. 23(2):61–74 (1987) (In Russian)

  • Kushnir A.F.: Statistical and Computational Methods of Seismic Monitoring. URSS, Moscow (2012) (In Russian)

  • Le Cam, L.M.: Locally asymptotically normal fami-lies of distributions. Univ. CA Publ. Statist. 3(2), 37–99 (1960)

    Google Scholar 

  • Le Cam, L.M., Yang, G.L.: Asymptotics in Statistics. Some Basic Concepts. Springer Series in Statistics. Shpringer, New York (1990)

    Google Scholar 

  • Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn., Springer texts in statistics. Springer, Berlin (1998)

  • Marple, S.: Digital Spectral Analysis. Prentice-Hall, Inc., Englewood Cliffs (1985)

    Google Scholar 

  • Maxwell, S.: Microseismic: growth born from success. Lead Edge 29(3), 338–343 (2010)

    Article  Google Scholar 

  • Nussbaum, M.: An asymptotic minimal risk for estimation of a linear functional relationship. J. Multivar. Anal. 4(3), 300–314 (1984)

    Article  MathSciNet  Google Scholar 

  • Rozhkov, M., Kushnir, A., Rojkov, N., Dricker, I., Hellman, S.: Statistical analysis of microseismic noise during hydraulic fracturing. In: Proceedings of the 74th conference and exhibition, EAGE, extended abstracts, P092 (2012)

  • Shao, J.: Mathematical Statistics. Springer, New York (1998)

    Google Scholar 

  • Van Trees, H.: Detection, Estimation and Modulation Theory, Part IV: Optimum Array Processing. Wiley, New York (2002)

    Book  Google Scholar 

  • Zhang, C., Florêncio, D.E., Ba Demba, E., Zhang, Z.: Maximum Likelihood Sound Source Localization and Beamforming for Directional Microphone Arrays in Distributed Meetings. IEEE Trans. Multim. 10(3):538–548 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the companies Synapse Science Center Inc. (Russia) and Earth Imaging Inc. (USA) for their support and assistance during the research and to the company ISTI Inc. (USA) for permission to use the records of surface seismic noise registered during hydraulic fracturing in the hydrocarbon field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varypaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushnir, A., Rozhkov, N. & Varypaev, A. Statistically-based approach for monitoring of micro-seismic events. Int J Geomath 4, 201–225 (2013). https://doi.org/10.1007/s13137-013-0049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-013-0049-6

Keywords

Mathematics Subject Classification

Navigation