Skip to main content
Log in

Knowledge-Driven Logistics Transformation: Complex Networks and UAVs in Distribution

  • Published:
Journal of the Knowledge Economy Aims and scope Submit manuscript

Abstract

In today’s rapidly evolving knowledge economy, the logistics landscape faces unprecedented challenges driven by the demands of e-commerce and takeaway services. Traditional logistics struggle with inefficiencies and escalating labor costs, prompting a paradigm shift toward leveraging uncrewed aerial vehicles (UAVs) for distribution. This paper explores the intersection of UAV technology, complex network theory, and the knowledge economy. The incorporation of UAVs into logistics networks offers a transformative solution to traditional challenges. However, a noticeable research gap exists in the strategic opening of distribution sites and optimizing flight paths. This study bridges this gap by introducing complex network evaluation indices into urban logistics UAV distribution networks. By applying complex network and innovation diffusion theories, we systematically assess the importance of distribution sites within the network, challenging conventional assumptions. Furthermore, we highlight the importance of knowledge management strategies in enhancing operational efficiency and adaptability within UAV distribution networks. Effective knowledge sharing and data analytics play a crucial role in informed decision-making and ongoing innovation. Our research pioneers the application of complex network evaluation indices, offering insights for logistics operators seeking to optimize their operations. This study advances our understanding of UAV logistics within the knowledge economy. It provides theoretical foundations for complex network analysis and practical recommendations for logistics managers. Embracing UAV technology presents economic and innovation implications, making it a driving force for efficiency and competitiveness in the logistics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abualigah, L., Diabat, A., Sumari, P., & Gandomi, A. H. (2021). Applications, deployments, and integration of internet of drones (iod): A review. IEEE Sensors Journal, 21(22), 25532–25546.

    Article  Google Scholar 

  • Aditya, U. S., Singh, R., Singh, P. K., & Kalla, A. (2021). A survey on blockchain in robotics: Issues, opportunities, challenges and future directions. Journal of Network and Computer Applications, 196, 103245.

    Article  Google Scholar 

  • Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128.

    Article  Google Scholar 

  • Ali, M. H., Chung, L., Kumar, A., Zailani, S., & Tan, K. H. (2021). A sustainable Blockchain framework for the halal food supply chain: Lessons from Malaysia. Technological Forecasting and Social Change, 170, 120870.

    Article  Google Scholar 

  • Allioui, H., & Mourdi, Y. (2023). Exploring the full potentials of IoT for better financial growth and stability: A comprehensive survey. Sensors, 23(19), 8015.

    Article  Google Scholar 

  • Alyassi, R., Khonji, M., Karapetyan, A., Chau, S. C. K., Elbassioni, K., & Tseng, C. M. (2022). Autonomous recharging and flight mission planning for battery-operated autonomous drones. IEEE Transactions on Automation Science and Engineering, 20(2), 1034–1046.

    Article  Google Scholar 

  • Azmat, M., & Kummer, S. (2020). Potential applications of unmanned ground and aerial vehicles to mitigate challenges of transport and logistics-related critical success factors in the humanitarian supply chain. Asian Journal of Sustainability and Social Responsibility, 5(1), 1–22.

    Article  Google Scholar 

  • Barrat, A., Barthélemy, M., & Vespignani, A. (2004). Weighted evolving networks: Coupling topology and weight dynamics. Physical Review Letters, 92(22), 228701.

    Article  Google Scholar 

  • Batallas, D. A., & Yassine, A. A. (2006). Information leaders in product development organizational networks: Social network analysis of the design structure matrix. IEEE Transactions on Engineering Management, 53(4), 570–582.

    Article  Google Scholar 

  • Cares, J. (2006). Distributed networked operations: The foundations of network centric warfare. IUniverse.

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.

    Article  Google Scholar 

  • Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

    Article  Google Scholar 

  • Coward, M. (2018). Against network thinking: A critique of pathological sovereignty. European Journal of International Relations, 24(2), 440–463.

    Article  Google Scholar 

  • Curado, M., Rodriguez, R., Tortosa, L., & Vicent, J. F. (2022). Anew centrality measure in dense networks based on two-way random walk betweenness. Applied Mathematics and Computation, 412, 126560.

    Article  Google Scholar 

  • Ding, J., Jiao, L., Wu, J., & Liu, F. (2020). Complex network structure extraction based on community relevance. International Journal of Modern Physics C, 31(04), 2050062.

    Article  Google Scholar 

  • Dong, C., Akram, A., Andersson, D., Arnäs, P. O., & Stefansson, G. (2021). The impact of emerging and disruptive technologies on freight transportation in the digital era: Current state and future trends. The International Journal of Logistics Management, 32(2), 386–412.

    Article  Google Scholar 

  • El-Jardali, F., Bou-Karroum, L., & Fadlallah, R. (2020). Amplifying the role of knowledge translation platforms in the COVID-19 pandemic response. Health Research Policy and Systems, 18, 1–7.

    Article  Google Scholar 

  • Elsayed, M., & Mohamed, M. (2020). The impact of airspace regulations on unmanned aerial vehicles in last-mile operation. Transportation Research Part D: Transport and Environment, 87, 102480.

    Article  Google Scholar 

  • Euchi, J. (2021). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chinese Journal of Aeronautics, 34(2), 182–190.

    Article  Google Scholar 

  • Golpîra, H., Khan, S. A. R., & Safaeipour, S. (2021). A review of logistics internet-of-things: Current trends and scope for future research. Journal of Industrial Information Integration, 22, 100194.

    Article  Google Scholar 

  • Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., Hinder, S., ... & Shaw, S. (2017). Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. Journal of Medical Internet Research19(11), e8775.

  • Gupta, L., Jain, R., & Vaszkun, G. (2015). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, 18(2), 1123–1152.

    Article  Google Scholar 

  • Hazen, B. T., Overstreet, R. E., & Cegielski, C. G. (2012). Supply chain innovation diffusion: Going beyond adoption. The International Journal of Logistics Management, 23(1), 119–134.

    Article  Google Scholar 

  • Hofmann, E., & Rüsch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23–34.

    Article  Google Scholar 

  • Hossain, N. U. I., Sakib, N., & Govindan, K. (2022). Assessing the performance of unmanned aerial vehicle for logistics and transportation leveraging the Bayesian network approach. Expert Systems with Applications, 209, 118301.

    Article  Google Scholar 

  • Huang, Y., Tang, J., & LAO, S. (2018). UAV flight conflict resolution algorithm based on complex network. Acta Aeronautica Et Astronautica Sinica, 39(12), 262–274.

  • Jasim, M. A., Shakhatreh, H., Siasi, N., Sawalmeh, A. H., Aldalbahi, A., & Al-Fuqaha, A. (2021). A survey on spectrum management for unmanned aerial vehicles (uavs). IEEE Access, 10, 11443–11499.

    Article  Google Scholar 

  • Javaid, M., Khan, I. H., Singh, R. P., Rab, S., & Suman, R. (2022). Exploring contributions of drones towards Industry 4.0. Industrial Robot: The International Journal of Robotics Research and Application49(3), 476–490.

  • Karamitsos, G., Bechtsis, D., Tsolakis, N., & Vlachos, D. (2021). Unmanned aerial vehicles for inventory listing. International Journal of Business and Systems Research, 15(6), 748–756.

    Article  Google Scholar 

  • Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U. C., & Schneckenburger, N. (2019). A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Communications Surveys & Tutorials, 21(3), 2361–2391.

    Article  Google Scholar 

  • Kim, J., Justin, C., Mavris, D., & Briceno, S. (2022). Data-driven approach using machine learning for real-time flight path optimization. Journal of Aerospace Information Systems, 19(1), 3–21.

    Article  Google Scholar 

  • Lee, C. Y., Chong, H. Y., Liao, P. C., & Wang, X. (2018). Critical review of social network analysis applications in complex project management. Journal of Management in Engineering, 34(2), 04017061.

    Article  Google Scholar 

  • Lee, D., Hess, D. J., & Heldeweg, M. A. (2022). Safety and privacy regulations for unmanned aerial vehicles: A multiple comparative analysis. Technology in Society, 71, 102079.

    Article  Google Scholar 

  • Li, H., Shang, Q., & Deng, Y. (2021a). A modified gravity model based on network efficiency for vital nodes identification in complex networks. arXiv preprint arXiv:2111.01526

  • Li, S., Zhang, H., Li, Z., & Liu, H. (2021b). An air route network planning model of logistics UAV terminal distribution in urban low altitude airspace. Sustainability, 13(23), 13079.

    Article  Google Scholar 

  • Li, X., Tupayachi, J., Sharmin, A., & Martinez Ferguson, M. (2023). Drone-aided delivery methods, challenge, and the future: A methodological review. Drones, 7(3), 191.

    Article  Google Scholar 

  • Li, Y., Liu, M., & Jiang, D. (2022). Application of unmanned aerial vehicles in logistics: A literature review. Sustainability, 14(21), 14473.

    Article  Google Scholar 

  • Liao, Y., Wu, G., & Huang, J. (2023). The impact of rural E-commerce environment development on orchard expansion from the perspective of tele-coupling: The case of Pinghe County in Southeast China. Land, 12(11), 1991.

    Article  Google Scholar 

  • Mathauer, M., & Hofmann, E. (2019). Technology adoption by logistics service providers. International Journal of Physical Distribution & Logistics Management, 49(4), 416–434.

    Article  Google Scholar 

  • Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305–6324.

    Article  Google Scholar 

  • Mithas, S., Chen, Z. L., Saldanha, T. J., & De Oliveira Silveira, A. (2022). How will artificial intelligence and Industry 4.0 emerging technologies transform operations management? Production and Operations Management, 31(12), 4475–4487.

    Article  Google Scholar 

  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147.

    Article  Google Scholar 

  • Nex, F., Armenakis, C., Cramer, M., Cucci, D. A., Gerke, M., Honkavaara, E., ... & Skaloud, J. (2022). UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing184, 215–242.

  • Notteboom, T., & Rodrigue, J. P. (2017). Re-assessing port-hinterland relationships in the context of global commodity chains. In Ports, Cities, and Global Supply Chains (pp. 67–82). Routledge.

  • Preindl, R., Nikolopoulos, K., & Litsiou, K. (2020). Transformation strategies for the supply chain: The impact of Industry 40 and digital transformation. In Supply Chain Forum: An International Journal, 21(1), 26–34. Taylor & Francis.

    Article  Google Scholar 

  • Qadir, Z., Ullah, F., Munawar, H. S., & Al-Turjman, F. (2021). Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Computer Communications, 168, 114–135.

    Article  Google Scholar 

  • Rak, J., Papadimitriou, D., Niedermayer, H., & Romero, P. (2017). Information-driven network resilience: Research challenges and perspectives. Optical Switching and Networking, 23, 156–178.

    Article  Google Scholar 

  • Rejeb, A., Rejeb, K., Simske, S. J., & Treiblmaier, H. (2023). Drones for supply chain management and logistics: A review and research agenda. International Journal of Logistics Research and Applications, 26(6), 708–731.

    Article  Google Scholar 

  • Rogers, Z. S., Golara, S., Abdusalam, Y., & Rogers, D. S. (2020). A sharing-enabled portfolio approach to distribution. Transportation Journal, 59(2), 99–128.

    Article  Google Scholar 

  • Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., ... & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. Ieee Access7, 48572–48634.

  • Sharma, S. K., & Singh, A. P. (2023). Urban logistics stakeholder priority assessment to improve urban planning policy. International Journal of Construction Management, 23(16), 2869–2878.

    Article  Google Scholar 

  • Sorooshian, S., Khademi Sharifabad, S., Parsaee, M., & Afshari, A. R. (2022). Toward a modern last-mile delivery: Consequences and obstacles of intelligent technology. Applied System Innovation, 5(4), 82.

    Article  Google Scholar 

  • Tamke, F., & Buscher, U. (2023). The vehicle routing problem with drones and drone speed selection. Computers & Operations Research, 152, 106112.

    Article  Google Scholar 

  • Thackara, J. (2006). In the bubble: Designing in a complex world. MIT Press.

  • Uyarra, E., Zabala-Iturriagagoitia, J. M., Flanagan, K., & Magro, E. (2020). Public procurement, innovation and industrial policy: Rationales, roles, capabilities and implementation. Research Policy, 49(1), 103844.

    Article  Google Scholar 

  • Vanderroost, M., Ragaert, P., Verwaeren, J., De Meulenaer, B., De Baets, B., & Devlieghere, F. (2017). The digitization of a food package’s life cycle: Existing and emerging computer systems in the logistics and post-logistics phase. Computers in Industry, 87, 15–30.

    Article  Google Scholar 

  • Vermesan, O., Eisenhauer, M., Sundmaeker, H., Guillemin, P., Serrano, M., Tragos, E. Z., ... & Bahr, R. (2022). Internet of things cognitive transformation technology research trends and applications. Cognitive Hyperconnected Digital Transformation, 17–95.

  • Wilson, C. (2007). Network centric operations: Background and oversight issues for congress. Congressional Research Service.

    Google Scholar 

  • Zhang, J., & Li, Y. (2023). Collaborative vehicle-drone distribution network optimization for perishable products in the epidemic situation. Computers & Operations Research, 149, 106039.

    Article  Google Scholar 

  • Zhang, M. (2023). Consumer behavior analysis based on Internet of Things platform and the development of precision marketing strategy for fresh food e-commerce. PeerJ Computer Science, 9, e1531.

    Article  Google Scholar 

  • Zhao, G. H., Jia, P., & Zhou, A. M. (2020). Improved degree centrality for directed-weighted network. Journal of Computer Applications, 40, 141–145.

    Google Scholar 

  • Zhu, X., Cai, L., Lai, P. L., Wang, X., & Ma, F. (2023). Evolution, challenges, and opportunities of transportation methods in the last-mile delivery process. Systems, 11(10), 509.

    Article  Google Scholar 

  • Zhu, X., Pasch, T. J., & Bergstrom, A. (2020). Understanding the structure of risk belief systems concerning drone delivery: A network analysis. Technology in Society, 62, 101262.

    Article  Google Scholar 

Download references

Funding

This research was supported by the Sichuan key research program (No. 2023YFG0054) and the Safety Foundation of Civil Aviation Administration of China (No. [2022]146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LY., Li, SY., Zou, X. et al. Knowledge-Driven Logistics Transformation: Complex Networks and UAVs in Distribution. J Knowl Econ (2024). https://doi.org/10.1007/s13132-024-01984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13132-024-01984-z

Keywords

Navigation