Abstract
The way in which a frequently evolving product is configured is a key issue in making predictions on its behavior in specific environments, with potentially major implications in taxing industries. Product Definition Systems (including Decision Support Systems) are proposed to support a dynamic alignment with fast changing contexts (outer environments) of products innovation (inner environments) conceptualized as complex systems. The alignment difficulty is theoretical (undecidability) and not solely practical to support products interchangeability (NP-complete problem). In changing environments new product versions have to be defined and named with corresponding properties or knowledge extensions. Our approach through syntax and semantics clears how such (product innovation) systems and knowledge extension are related to change the universe of possibles including problem space and solution space. It is an important topic for research on knowledge economy and Product Definition System.
This is a preview of subscription content,
to check access.

Notes
Configuration Management—Systems Engineering Handbook: https://www.nasa.gov/seh/6-5-configuration-management
Information stored in a computer system and organized to be consulted, edited, duplicated, saved or even restored according to a usually relational model. A database management system (DBMS) is software that permits these operations. Typically, it is simultaneously used by other software as well as administrators or developers.
Such a system refers to a class if information systems applied to managing organizational knowledge. They are IT-based systems developed to support and enhance the organizational processes of knowledge creation, storage/retrieval, transfer and application (p.114).
Deductive reasoning whenever enough information is at hand to permit it.
In an IT sense, a single database provides an alternative structure to heterogeneous systems interfacing software solutions having their own database and specific to each functional area: design, production, finance, etc.
The ergonomics of a single man-machine interface may be preferable (for training courses, application changes, etc.) to that of multiple interfaces in heterogeneous environments.
The term effectivity is also used to express the difference between applicable and applied. Effectivity conveys the quality of alignment between what one effectively does and what one intended to do.
Configuration and Design Data Management department of Rolls-Royce Plc, Derby (UK). November 2015—personal interview.
Central function of strategic planning—meeting and personal interview 20/07/2020.
A rigid structure used to hold the heavy aircraft engine in its place and position under an aircraft’s wing.
The streamlined housing that supports, contains and protects the aircraft engine.
A set of technologies and related working methods which, via electronic communication, allows information to be shared through a digital medium usable by members of a group engaged in collaborative and/or cooperative work.
Research comparing different environments/samples at a single moment/phase, while a longitudinal research may provide information about cause-and-effect relationships, considering developments and changes in the same environment/sample over a period of time.
The National Institute of Standards and Technology estimated at $60 billion the losses incurred by US manufacturing and commerce due to bugs contained in software (S and T Press USA-n°324-Sept.2002).
For example, in proximity to motors, only highly heat-resistant products can be used (Champion Aeropace LLC, Service Bulletin S.B. CH53536-1–74-001, Interchangeability and Intermixability of Parts, December 19th 2008).
https://www.capterra.com/product-lifecycle-management-software/; Product Lifecycle Management (PLM)—Global Market Trajectory & Analytics, (2022), Research and Markets, The World’s Largest Market Research Store.
The bloodbath of debates about FFF From, Fit, Function and revisions. OpenBOM. 29/02.
Guidance on identification and naming of substances under REACH and CLP, ECHA, version 1.3, Feb. 2014.
Note that a domain d is a countable set of values characterized by a name and that a relation R is a subset of the Cartesian product of a list of domains characterized by a name.
A Cartesian product is defined from many universes U1, U2, …, Un as the set of distributions of possible values (n-tuples) respectively selected one by one in each universe. U1, U2, …, Un can be copies of a same universe U (a proof that many universes have to coexist).
For example, Set theory (Jech, 1978) is an overall framework shaped by formal Logic and general axiomatization, well suited to represent any kind of systems from sets defined with specific properties with regard to so-called “collections” defined with universal properties.
References
Abramovici, M., & Aidi, Y. (2013). Next generation product lifecycle management (PLM)”. In: Fathi M. (eds) Integration of practice-oriented knowledge technology: Trends and prospectives, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69820-3_64
Alavi, M., & Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136. https://doi.org/10.2307/3250961
Aleksander, I., & Morton, H. (2012). Aristotle’s laptop: The discovery of our informational mind, Series on Machine Consciousness (Book 1). World Scientific Publishing Company (pubs). https://doi.org/10.1142/S1793843014400083
Alvesson, M., & Sandberg, J. (2020). The Problematizing Review: A Counterpoint to Elsbach and Van Knippenberg's Argument for Integrative Reviews. Journal of Management Studies, 57(6), 1290–1304. https://doi.org/10.1111/joms.12582
Amann, K. (2002). Product lifecycle management: Empowering the future of business, CIM Data, Inc.
Andersson, M., Lindgren, R., & Henfridsson, O. (2008). Architectural knowledge in inter-organizational IT innovation. Journal of Strategic Information Systems, 17(1), 19–38. https://doi.org/10.1016/j.jsis.2008.01.002
André, J., & Hudrisier, H. (2002). Unicode, écriture du monde?. Revue Document Numérique (special issue), 6(3–4), Hermès Lavoisier.
Ardito, L., Cerchione, R., Mazzola E., & Raguseo, E. (2022). Industry 4.0 transition: A systematic literature review combining the absorptive capacity theory and the data–information–knowledge hierarchy. Journal of Knowledge Management, 26(9), 2222–2254. https://doi.org/10.1108/JKM-04-2021-0325
Argote, L., & Greve, H. (2007). A behavioral theory of the firm: 40 years and counting: Introduction and impact. Organization Science, 18(3), 337–349.
Argyres, N. (1996). The impact of information technology on coordination: Evidence from the B-2 “Stealth” Bomber. Organization Science, 10(2), 162–180. https://doi.org/10.1287/orsc.10.2.162
Argyris, C., & Schon, D. (1978). Organizational learning: A theory of action perspective. Addison-Wesley Publishing Co.
Arnott, D., Pervan, G., O’Donnell, P., & Dodson, G. (2009). An analysis of decision support systems research: Preliminary results. In R. Meredith, G. Shanks, D. Arnott D, & S. Carlsson (Eds.), Decision support in an uncertain world: The 2004 IFIP International Conference on Decision Support Systems (DSS2004): Proceedings of the Conference, Monash University Publishing, 25–38.
Aumann, R. (1999). Interactive epistemology I: Knowledge. International Journal of Game Theory, 28(3), 263–300. https://doi.org/10.1007/s001820050111
Ávila, M. M. (2022). Competitive advantage and knowledge absorptive capacity: The mediating role of innovative capability. Journal of the Knowledge Economy, 13, 185–210. https://doi.org/10.1007/s13132-020-00708-3
Batenburg, R., Helms R., & Versendaal, J. (2005). The maturity of product lifecycle management in Dutch organizations: A strategic alignment perspective, PLM’05: International conference on product life cycle management, Lyon, France.
Bhatt, G. D., & Zaveri, J. (2002). The enabling role of decision support systems in organizational learning. Decision Support Systems, 32(3), 297–309.
Beauzamy, B. (2012). Archimedes’ modern works. SCM (Ed.), Real life mathematics (Coll.), Broché, Paris.
Bellagio, D. E., & Milligan, T. J. (2005). Software configuration management strategies and IBM rational clearcase: A practical introduction, IBM Press.
Benbya, H., & Meissonier, R. (2007), La contribution des Systèmes de Gestion des Connaissances au développement de nouveaux produits: étude de cas d'une entreprise du secteur de l'industrie aéronautique, Systèmes d'Information et Management, 12(1).
Bernard, A., & Perry, N. (2003). Fundamental concepts of product/technology/process informational integration for process modelling and process planning. International Journal of Computer Integrated Manufacturing, 16(7–8), 557–565.
Boothroyd, G., Dewhurst, P., & Winston, A. K. (2010). Product design for manufacture and assembly design for assembly, (3rd ed.), (Manufacturing engineering and materials processing) hardcover. https://doi.org/10.1201/9781420089288
Bösser, T. (2005). Evaluating user quality and business value of applications using semantic knowledge technology. Journal of Knowledge Management, 9(5), 50–63. https://doi.org/10.1108/13673270510622456
Bouikni, N., Rivest, L., & Desrochers, A. (2008). A multiple views management system for concurrent engineering and PLM. Concurrent Engineering: Research and Applications, 16(1), 61–72. https://doi.org/10.1177/1063293X07084641
Bronsvoort, W. F., & Noort, A. (2004). Multiple-view feature modeling for integral product development. Computer-Aided Design, 36(10), 929–946. https://doi.org/10.1016/j.cad.2003.09.008
Brown, J. (2006). Managing product relationships: Enabling iteration and innovation in design, Business Value Research Series, June, AberdeenGroup.
Calabrese, A., & Costa, R. (2015). Strategic thinking and business innovation: Abduction as cognitive element of leaders’ strategizing. Journal of Engineering and Technology Management, 38, 24–36. https://doi.org/10.1016/j.jengtecman.2015.06.001
Cartwright, R. (1971). Identity and substitutivity. In Identity and individuation, (1971), M. K. Munitz (ed.), New York University Press, 119–133, reprinted in Cartwright, R. (1987), Philosophical essays, 135–147. https://doi.org/10.2307/2025325
Chiva, R., Ghauri, P., & Alegre, J. (2014). Organizational learning, innovation and internationalization: A complex system model. British Journal of Management., 25(4), 687–705.
CIM, Data. (2002). Etude de l’offre SAP pour le cPDm: my SAP PLM, Pilotage des nouveaux produits et processus grâce à la gestion du cycle de vie des produits., SAP.AG, Germany.
Codd, E. F. (1970). A relational model of data for large shared data banks, CACM 13, No 6, June, Information Retrieval, P. Baxendale, Ed. https://doi.org/10.1007/978-3-642-48354-7_4
Cori, R., & Lascar, D. (1993). Logique mathématique II. Fonctions récursives, théorème de Gödel, théorie des ensembles, théorie des modèles, 1st ed., Ed. Masson, Coll. Axiomes.
Cyert, R., & March, J. G. (1963). A behavioral theory of the firm. Prentice Hall. https://doi.org/10.7202/1021288ar
Dambietz, F. M. (2022). Performance simulation of modular product architectures by model-based configuration. Springer Vieweg, Hamburg, Germany. https://doi.org/10.1007/978-3-662-64233-7
David, P. (2011). Multilingual Web-LT: Meta-data interoperability between Web CMS, Localization tools and Language Technologies at the W3C, World Wide Web Consortium (W3C), University of Limerick, Dec.
David, M., & Rowe, F. (2016). What does PLMS (product lifecycle management systems) manage: Data or documents? Complementarity and contingency for SMEs. Computers in Industry, Elsevier, 75, 140–150.
Dehornoy, P. (2007). Au-delà du forcing: La notion de vérité essentielle en théorie des ensembles. In: Joinet, J. B. (Ed.) Logique, dynamique et cognition. Paris: Editions de la Sorbonne, Logique, langage, sciences, philosophie (Coll.), 147–169.
Dibiaggio, L. (2012). The governance of knowledge integration. In L. Dibiaggio, P.-X. Meschi (Ed.) Management in the knowledge economy—New managerial models for success?, Pearson.
Djezzar, L. (2003). Gestion de configuration. Dunod.
Dulcic, Z., Pavlic, D., & Silic, I. (2012). Evaluating the intended use of decision support system (DSS) by applying technology acceptance Model (TAM) in business organizations in Croatia. Procedia-Social and Behavioral Sciences, 58, 1565–1575.
Dutta, B., & Madalli, D. P. (2015). Trends in knowledge modelling and knowledge management: An editorial. Journal of Knowledge Management, 19(1). https://doi.org/10.1108/JKM-10-2014-0442
ElMaraghy, W. H. (2019). Complexity in manufacturing. In: Chatti S., Laperrière L., Reinhart G. & Tolio T. (eds), CIRP Encyclopedia of production engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53120-4_6670
Esterhuizen, D., Schutte, C. S., & Du Toit, A. S. (2012). Knowledge creation processes as critical enablers for innovation. International Journal of Information Management, 32(4), 354–364. https://doi.org/10.1016/j.ijinfomgt.2011.11.013
Ferreira, J., Mueller, J., & Papa, A. (2020). Strategic knowledge management: Theory, practice and future challenges. Journal of Knowledge Management, 24(2), 121–126. https://doi.org/10.1108/JKM-07-2018-0461
Fichman, R. G. (2004). Going beyond the dominant paradigm for IT innovation diffusion research: Emerging concepts and methods. Journal of the Association for Information Systems, 5(8), 314–355. https://doi.org/10.17705/1jais.00054
Fine, K. (2002). The limits of abstraction. Oxford University Press.
Feeney, M. (1999). Digital culture: Maximizing the nation’s investment: A synthesis of JISCO/NPO studies on the preservation of electronic materials. National Preservation Office.
Feinstein, J. S. (2017). The creative development of fields: Learning, creativity, paths, implications. Journal of the Knowledge Economy, 8, 23–62. https://doi.org/10.1007/s13132-015-0277-0
Fodor, X. (2008). Organiser les échanges de données techniques: ARIANESPACE ne travaille pas dans la précipitation, Dossier Collaboration: Optimisez votre travail, iTechnologie, N°2.
Gable, G. (2010). Strategic information systems research: An archival analysis. Journal of Strategic Information Systems, 19(1), 3–16. https://doi.org/10.1016/j.jsis.2010.02.003
Garbuio, M., Lovallo, D., Porac, J., & Dong, A. (2015). A design cognition perspective on strategic option generation. Advances in Strategic Management., 32, 441–470.
Gavetti, G. (2012). Perspective—Toward a behavioral theory of strategy. Organization Science, 23(1), 267–285. https://doi.org/10.1287/orsc.1110.0644
Gavetti, G., & Rivkin, J. W. (2007). On the origin of strategy: Action and cognition over time. Organization Science, 18(3). https://doi.org/10.1287/orsc.1070.0282
Ge, Y., Jiang, G.. & Ge, Y. (2013). Efficient invariant search for distributed information systems, IEEE 13th International Conference on Data Mining, 7–10 Dec., Dallas, USA. https://doi.org/10.1109/ICDM.2013.133
Giacomoni, G. (2018). The design of new representations and the implications for decision-making theory: Learning from Archimedes, section New Concepts and Ideas for Management. European Management Review, 6(1), 69–80. https://doi.org/10.1111/emre.12290
Giacomoni, G., & Sardas, J. C. (2014). Why innovation requires new scientific foundations for manageable identities of systems (Part II—Chap.4). In D. T’Eni & F. Rowe (Eds) R&D strategy and operations—Innovation and IT in an international context, Palgrave MacMillan (Publisher). https://doi.org/10.1057/9781137336132_5
Girard, J. Y. (2004). Linear logic in computer science. London Mathematical Society Lecture Notes Series, No 316, Cambridge University Press. https://doi.org/10.1017/CBO9780511550850
Gonzalez, R. V. D. (2022). Innovative performance of project teams: The role of organizational structure and knowledge-based dynamic capability. Journal of Knowledge Management, 26(5), 1164–1186. https://doi.org/10.1108/JKM-03-2021-0259
Greve, H. R. (2003). A Behavioral Theory of R&D Expenditures and Innovations: Evidence from Shipbuilding. The Academy of Management Journal, 46(6), 685–702.
Grieves, M. (2006). Product lifecycle management: Driving the next generation of lean management., New York, NY: McGraw Hill.
Grønning, T., & Fosstenløkken, S. M. (2015). The learning concept within innovation systems theorizing: A narrative review of selected publications on national and regional innovation systems. Journal of the Knowledge Economy, 6, 420–436. https://doi.org/10.1007/s13132-014-0216-5
Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda, technological forecasting and social change, Elsevier, 162, 120392. https://doi.org/10.1016/j.techfore.2020.120392
Heylighen, F. (1990). Representation and Change: A Metarepresentational Framework for the Foundations of Physical and Cognitive Science. Communication and Cognition.
Hwang, J., Mun, D., & Han, S. (2009). Representation and propagation of engineering change information in collaborative product development using a neutral reference model. Concurrent Engineering: Research and Applications, 17(2), 147–157. https://doi.org/10.1177/1063293X09105339
Iandolo, F., Loia, F., Fulco, I., et al. (2021). Combining big data and artificial intelligence for managing collective knowledge in unpredictable environment—Insights from the Chinese case in facing COVID-19. Journal of the Knowledge Economy, 12, 1982–1996. https://doi.org/10.1007/s13132-020-00703-8
IBM & Dassault Systèmes. (2008). IBM and Dassault Systèmes: Business process accelerators for systems engineering—Integrated product development from needs identification through to final product validation.
Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge University Press.
Jech, T. (1978). Set theory. Academic Press.
Jiang, G., Chen, H., & Yoshehira, K. (2006). Modeling and tracking of transaction flow dynamics for fault detection in complex systems. IEEE Transactions on Dependable and Secure Computing, 3(4), 312–326. https://doi.org/10.1109/TDSC.2006.52
Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Harvard University Press.
Kahneman, D., & Smith, V. (2002). Foundations of behavioral and experimental economics. Advanced information on the prize in economic sciences 2002, The Royal Swedish Academy of Sciences, 17.
Klein, E. (2013). D’où viennent les idées (scientifiques), Editions Manucius.
Knapp, A., & Mossakowski, T. (2018). Multi-view consistency in UML: A survey. In Graph Transformation, Specifications, and Nets, 37–60.
Kumar, M., Paul, J., Misra, M., & Romanello, R. (2021). The creation and development of learning organizations: A review. Journal of Knowledge Management, 25(10), 2540–2566. https://doi.org/10.1108/JKM-10-2020-0795
Lanzillotta. (2015). Configuration and Design Data Management department of Rolls-Royce Plc, Derby (UK). November 2015 – personal interview.
Lanzolla, G., Lorenz, A., Miron-Spektor, E., Schilling, M., Solinas, G., & Tucci, C. (2018). Digital transformation: What is new if anything? Academy of Management Discoveries, 4(3), 378–387. https://doi.org/10.5465/amd.2018.0103
Lautman, A. (2006). Les Mathématiques, les Idées et le Réel Physique, Vrin, Librairie Philosophique J.
Lawrence, P., & Lorsch, J. (1967). Adapter les structures de l'entreprise—Intégration ou différenciation, French translation, Paris, Editions d'organisation.
Lepore, D., Dubbini, S., Micozzi, A., et al. (2022). Knowledge sharing opportunities for industry 4.0 firms. Journal of the Knowledge Economy, 13, 501–520. https://doi.org/10.1007/s13132-021-00750-9
Mantripragada, R., & Whitney, D. E. (1999). Modeling and controlling variation propagation in mechanical assemblies using state transition models. IEEE Transaction on Robotics and Automation, 15(1), 124–140. https://doi.org/10.1109/70.744608
March, J. G. (1991). Exploration and exploitation in organizational learning, Organization Science, 2(1), 71–87. https://doi.org/10.1007/10.1287/orsc.2.1.71
Merminod, V., & Rowe, F. (2012). How does PLM technology support knowledge transfer and translation in new product development? Transparency and boundary spanners in an international context. Information and organization, 22(4), Elsevier, 295–322. https://doi.org/10.1016/j.infoandorg.2012.07.002
Morozov, E. (2013). To save everything, click here. The folly of technological solutionism. New York, NY: Public Affairs.
Morshedzadeh, I., Ng, H. C. A., & Jeusfeld, M. (2021). Managing manufacturing data and information in product lifecycle management systems considering changes and revisions. International Journal of Product Lifecycle Management, 13(3), Inderscience Publishers, pp. 244–264. https://doi.org/10.1504/IJPLM.2021.118041
Mostefai, S., & Batouche, M. (2005). Data integration in Product Lifecycle Management: An ontology-based approach, PLM’05: International conference on product life cycle management, Lyon, France.
NASA. (2019). Configuration Management – Systems Engineering Handbook: https://www.nasa.gov/seh/6-5-configuration-management
Noël, F. (2006). A dynamic multi-view product model to share product behaviors among designers: How process model adds semantic to the behavior paradigm. International Journal of Product Lifecycle Management, 1(4), 380–390. https://doi.org/10.1504/ijplm.2006.011056
Nwankpa, J. K., Roumani, Y., & Datta, P. (2022). Process innovation in the digital age of business: The role of digital business intensity and knowledge management. Journal of Knowledge Management, 26(5), 1319–1341. https://doi.org/10.1108/JKM-04-2021-0277
Olla, P., & Holm, J. (2006). The role of knowledge management in the space industry: Important or superfluous? Journal of Knowledge Management, 10(2), 3–7. https://doi.org/10.1108/13673270610656584
Pavlou, P. A., & El Sawy, O. A. (2010). The ‘Third Hand’: IT-enabled competitive advantage in turbulence through improvisational capabilities. Information Systems Research, 21(3), 443–471. https://doi.org/10.1287/isre.1100.0280
Prashanth, B. N., & Venkataram, R. (2017). Development of modular integration framework between PLM and ERP systems, Materials Today: Proceedings. Part A, 4(2), 2269–2278. https://doi.org/10.1016/j.matpr.2017.02.075
Pol, G., Jared, G., Merlo, C., & Legardeur, J. (2005). From PDM systems to integrated project management systems: A case study, PLM’05: International conference on product life cycle management, Lyon, France.
Popadiuk, S., & Choo, C. W. (2006). Innovation and knowledge creation: How are these concepts related?. International Journal of Information Management, 26(4), 302–312. https://doi.org/10.1016/j.ijinfomgt.2006.03.011
Puranam, P. (2018). The organizational foundations of behavioral strategy. In M. Augier, C. Fang, & V. P. Rindova, V.P. (Eds), Behavioral strategy in perspective. Advances in strategic management, 39 England: Emerald Group Publishing - 332220180000039006. https://doi.org/10.1108/S0742
Quigley, J. M. (2019). Configuration management, second edition, Routledge, 2nd Ed. https://doi.org/10.1201/9780429318337
Rahmani, K. & Thomson, V. J. (2011). Managing subsystem interfaces of complex products. International Journal of Product Lifecycle Management, Vol.5, N°1, Paris. https://doi.org/10.1504/IJPLM.2011.038103
Raymond, E. S. (1998). The cathedral and the bazaar, O’Reilly.
Rehman, F. U., & Yan, X. T. (2007). Supporting early design decision making using design context knowledge. Journal of Design Research, 6(1–2), 169–189. https://doi.org/10.1504/JDR.2007.015568
Reix, R., Kalika, M., Fallery, B., & Rowe, F. (2016). Systèmes d’information et management des organisations, 7th ed., Vuibert.
Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 74(2), 358–366.
Roser, C. (2016). “Faster, better, cheaper” in the history of manufacturing: From the Stone Age to lean manufacturing and beyond (1st ed.). Productivity Press.
Rousseau, F. (2005). Conception des systèmes logiciel/matériel: Du partitionnement logiciel/matériel au prototypage sur plateformes reconfigurables, HDR thesis, Université Joseph Fourier, Grenoble I.
Rowe, F., & Te’eni, D. & Merminod, V. (2021). The maturation of digital objects in innovation projects: The role of interpersonal networks and team sharing atmosphere. European Journal of Information Systems, Published Online. https://doi.org/10.1080/0960085X.2021.1967210
Samuelson, L. (2004). Modeling knowledge in economic analysis. Journal of Economic Literature, 42(2), 367–403. https://doi.org/10.1257/0022051041409057
SAP online documentation. (2022). https://help.sap.com/docs/SAP_ERP/c6d142cd083f43d6b615d646b26469ee/48d8c353b677b44ce10000000a174cb4.html?version=6.03.latest
Schweitzer, F. M., Handrich, M., & Heidenreich, S. (2019). Digital transformation in the new product development process: The role of IT-Enabled PLM systems for relational, structural, and NPD performance. International Journal of Innovation Management, 23(7), 1950067. https://doi.org/10.1142/S1363919619500671
Schwenck, C. R. (1988). The cognitive perspective on strategic decision making. Journal of Management Studies, 25(1), January, Bloomington, U.S.A, 41–55. https://doi.org/10.1111/j.1467-6486.1988.tb00021.x
Segarra-Ciprés, M., & Bou-Llusar, J. C. (2018). External knowledge search for innovation: The role of firms’ innovation strategy and industry context. Journal of Knowledge Management, 22(2), 280–298. https://doi.org/10.1108/JKM-03-2017-0090
Senge, P. M. (2006). The fifth discipline: The art and practice of the learning organization, Random House Business (Eds), Broché, 2nd Ed, Doubleday/Currency.
Sharma, G. T. & Patil, R. K. (2015). Reviewing product lifecycle management through definition, structure, analysis, strategies, implementation and application (DSASIA). International Journal of Engineering Research & Technology, Vol.3, N°17, NCERAME Conference Proceedings, Special Issue, India.
Shilovitsky. (2020). The bloodbath of debates about FFF [From, Fit, Function] and revisions. OpenBOM. 29/02.
Shukla, M. (2015). An introduction to knowledge utilization capability and its autopoietic epistemological domain. Journal of the Knowledge Economy, 6, 1001–1012. https://doi.org/10.1007/s13132-013-0171-6
Simon, H. A. (1996). The science of the artificial. MIT Press.
Simon, H. A. (1976). Administrative behavior. In A study of decision-making processes in administrative organization, (3rd ed.), London: Macmillan Publishers.
Sodirova, A., Evangelopoulos, N., Valacich, J. S., & Ramakrishnan, T. (2008). Uncovering the intellectual core of the information systems discipline. MIS Quarterly, 32(3), 467–482. https://doi.org/10.2307/25148852
Srivardhana, T., & Pawlowski, S. D. (2007). ERP systems as an enabler of sustained business process innovation: A knowledge-based view. Journal of Strategic Information Systems, 16(1), 51–69. https://doi.org/10.1016/j.jsis.2007.01.003Get
Stark, J. (2004). Product lifecycle management—21st century paradigm for product realization. Decision Engineering Series, Springer Verlag, Berlin. https://doi.org/10.1007/978-0-85729-546-0
Suppe, F. (2017). Axiomatization, in: Newton-Smith W. H. (Ed) A companion to the philosophy of science. USA: Blackwell Publishers Ltd.
Thagard, P. (2005). Mind: Introduction to cognitive science. MIT Press.
Tarski, A. (1969). Truth and proof. Scientific American, 220, 63–77. https://doi.org/10.1038/SCIENTIFICAMERICAN0669-63
Tarski, A. (1983). Logic, semantics, metamathematics, Corcoran J. (ed.), Hackett, Woodger H.J. (1st ed. & transl.), Oxford University Press.
Tennant, N. (2004). A general theory of abstraction operators. The Philosophical Quarterly, 54(214), 105–133. https://doi.org/10.1111/j.0031-8094.2004.00344.x
Turing, A. & Girard, J. Y. (1999). La machine de Turing, Editions du seuil.
Van der Ven, A. H. (1986). Central problems in the management of innovation. Management Science, 32(5), 590–607. https://doi.org/10.1287/mnsc.32.5.590
Watts, F. B. (2015). Configuration management for senior managers, essential product configuration and lifecycle management for manufacturing. Lavoisier.
Winter, S. G., & Szulanski, G. (2001). Replication as strategy. Organization Science, 12(6), USA, 730–743. https://doi.org/10.1287/orsc.12.6.730.10084
Wise, J. (2019). The Boeing 737 Max and the problems autopilot can’t solve. The New-York Times.
Woodward, J. (1965). Industrial organization. Theory and PracticE, Oxford University Press. https://doi.org/10.1177/017084068100200219
Wu, W., Fang, L., Lin, T., Yeh, S., & Ho, C. (2012). A novel CMII-based engineering change management framework: An example in Taiwan’s motorcycle industry. IEEE Transactions on Engineering Management, 59(3), 494–505. https://doi.org/10.1109/TEM.2011.2164254
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Enhancing the Adaptability of Family Businesses to the Knowledge-based Economy
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gilbert, G. The Need for Products Interchangeability: An Unsolved Problem of Semantic Conflicts No Product Definition System Can Support Perfectly. J Knowl Econ (2023). https://doi.org/10.1007/s13132-023-01181-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13132-023-01181-4