Skip to main content
Log in

Computational Model of Quadruple Helix Innovations Ecosystem

Journal of the Knowledge Economy Aims and scope Submit manuscript

Cite this article


We propose a computational model of the quadruple helix innovation ecosystem as a disruptive innovation cause. The proposal holds on twofold: quantum computation and the ecosystem dynamics, which causes disruptive innovations. Harnessing disruptive innovations’ dynamics in an innovation ecosystem is theoretically explained based on the Dirac–Solow–Swan model to describe the ecosystem’s capital accumulations. The quantum perspective of the capital accumulation in the disruption leads to the hyperfine splitting of capital due to the Christensen effect and, therefore, the excitation of disruption factors (capital, technology, and labor) happens from the old status into the new industry of disruption. The capital dynamics junction occurs due to the Christensen effect, post symmetry breaking of the market. We show that the harnessing of disruptions depends on the expansion factor of ecosystem agent capital accumulation on incumbent equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. The branch of capital dynamics from \(t=0 \rightarrow t<0\) is not taken into account.


  • Acemoglu, D. (2008). Introduction to modern economic growth (Princeton University Press).

  • Acemoglu, D., & Cao, D. (2015). Journal of Economic Theory, 157, 255.

    Article  Google Scholar 

  • Adner, R. (2002). Strategic Management Journal, 23(8), 667.

    Article  Google Scholar 

  • Bohm, D. (2012). Quantum theory (Courier Corporation)

  • Boianovsky, M., et al. (2009). History of Political Economy, 41(1), 1.

    Article  Google Scholar 

  • Bower, J. L., Christensen, C. M. (1995) Disruptive technologies: catching the wave (Harvard Business Review Video)

  • Burgelman, R. A., & Grove, A. S. (1996). California management review, 38(2), 8.

    Article  Google Scholar 

  • Bucci, A., & Guerrini, L. (2009). The BE Journal of Macroeconomics, 9, 1.

    Google Scholar 

  • Carayannis, E. G. (2004). International Journal of Nuclear Knowledge Management, 1(1–2), 49.

    Article  Google Scholar 

  • Carayannis, E. G., & Provance, M. (2008). International Journal of Innovation and Regional Development, 1(1), 90.

    Article  Google Scholar 

  • Carayannis, E. G., & Campbell, D. F. (2009). International journal of technology management, 46(3–4), 201.

    Article  Google Scholar 

  • Carayannis, E., & Grigoroudis, E. (2016). Foresight and STI Governance, 10, 1.

    Article  Google Scholar 

  • Carayannis, E. G., Grigoroudis, E., Campbell, D. F., Meissner, D., & Stamati, D. (2018). R&D Management, 48(1), 148.

    Article  Google Scholar 

  • Christensen, C. M. (2006). Journal of Product innovation management, 23(1), 39.

    Article  Google Scholar 

  • Christensen, C. (2013). The innovator’s dilemma: when new technologies cause great firms to fail (Harvard Business Review Press).

  • Christensen, D., Clayton, M., Raynor, M. E., McDonald, R. (2015). Harvard Business Review pp. 44–53.

  • Cusumano, M. A. (2015). Communications of the ACM, 58(1), 32.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). Research policy, 29(2), 109.

    Article  Google Scholar 

  • Dechter, R., Pearl, J. (1988). In Search in artificial intelligence (Springer) pp. 370–425.

  • Gartner. (2014). Hype Cycle Special Report, 1.

  • Heinrich, E. (2014). Telecom companies count $386 billion in lost revenue to whatsapp.

  • Kempe, J., Kitaev, A., & Regev, O. (2006). SIAM Journal on Computing, 35(5), 1070.

    Article  Google Scholar 

  • Kumar, V. (1992). AI magazine, 13(1), 32.

    Google Scholar 

  • Leydesdorff, L., & Etzkowitz, H. (1998). Science and public policy, 25(3), 195.

    Google Scholar 

  • Nielsen, M., Chuang, I., & Grover, L. (2002). American Journal of Physics, 70, 558.

    Article  Google Scholar 

  • Nonneman, W., & Vanhoudt, P. (1996). The Quarterly Journal of Economics, 111(3), 943.

    Article  Google Scholar 

  • Romer, P. M. (1994). The journal of economic perspectives, 8(1), 3.

    Article  Google Scholar 

  • Solow, R. M. (1956). The quarterly journal of economics pp. 65–94.

  • Swan, T. W. (1956). Economic record, 32(2), 334.

    Article  Google Scholar 

  • Trisetyarso, A. (2010). Journal of Mathematical Physics, 51(7), 072103.,

  • Trisetyarso, A. (2012). Quantum Information & Computation, 2(11–12), 0989.

    Article  Google Scholar 

  • Trisetyarso, A., Hastiadi, F. F. (2018). In 2018 International Symposium on Electronics and Smart Devices (ISESD) (IEEE) pp. 1–4.

  • Trisetyarso, A., Hastiadi, F. F. (2019). In Asian Conference on Intelligent Information and Database Systems (Springer) pp. 552–561.

Download references


AT and FFH thank to Professor Emil Salim for suggestions and discussions. The research is supported financially by the FEB UI grant of multidisciplinary research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Agung Trisetyarso.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trisetyarso, A., Hastiadi, F.F. Computational Model of Quadruple Helix Innovations Ecosystem. J Knowl Econ 14, 314–326 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: