Journal of the Knowledge Economy

, Volume 9, Issue 3, pp 767–781 | Cite as

Participation and Knowledge Exchange in a Hybrid-Economic Software Community

  • Warren S. Allen


Why and how technology professionals share and exchange knowledge and otherwise participate in peer-production and peer-support communities is an ongoing topic of study. Extant research skews toward online communities and toward open-source software (OSS) communities of developers, limiting what researchers can say about why and how knowledge-sharing and peer-support happens in cases where such practices are conducted beyond these settings. In this paper, I present results from a mixed methods study of the shared cultural knowledge in the Microsoft SharePoint user community, a global knowledge-sharing peer support community with substantial online and offline contexts. Learning, access to experts, and socio-professional motivations drive participation, but how the community provides for its constituents cannot be explain by theorizing the community as strictly a nonmarket institution but as a hybrid-economic institution constituted by interdependent market and nonmarket dynamics. The study also raises questions for future research regarding how the relationship between “online” and “offline” manifestations of community participation are conceptualized.


Knowledge exchange Software communities Ethnography Mixed methods 


  1. Adamic, L. A., & Huberman, B. A. (2002). Zipf’s law and the internet. Glottometrics, 3(1), 143–150.Google Scholar
  2. Adler, P. S., & Kwon, S.-W. (2002). Social capital: prospects for a new concept. Academy of Management Review, 27(1), 17–40. doi: 10.5465/AMR.2002.5922314.CrossRefGoogle Scholar
  3. Allen, W. (2009). Boundary objects in hybrid commercial-open-source software development firms. Chapel Hill: Presented at the iConference.Google Scholar
  4. Argote, L., & Ingram, P. (2000). Knowledge transfer: a basis for competitive advantage in firms. Organizational Behavior and Human Decision Processes, 82(1), 150–169. doi: 10.1006/obhd.2000.2893.
  5. Arrow, K. J. (1969). The organization of economic activity: issues pertinent to the choice of market versus nonmarket allocation. In The analysis and evaluation of public expenditure: the PPB system (Vol. 1, pp. 59–73).Google Scholar
  6. Benkler, Y. (2002). Coase’s Penguin, or, Linux and the nature of the firm. Yale Law Journal, 112, 369–446.CrossRefGoogle Scholar
  7. Benkler, Y. (2006). The wealth of networks: how social production transforms markets and freedom. New Haven: Yale University Press.Google Scholar
  8. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.CrossRefGoogle Scholar
  9. Brown, J. S., & Duguid, P. (1991). Organizational learning and communities-of-practice: toward a unified view of working, learning, and innovation. Organization Science, 2(1), 40–57. doi: 10.1287/orsc.2.1.40.CrossRefGoogle Scholar
  10. Carlile, P. R. (2002). A pragmatic view of knowledge and boundaries: boundary objects in new product development. Organization Science, 13(4), 442–455. doi: 10.1287/orsc.13.4.442.2953.CrossRefGoogle Scholar
  11. Chen, C.-J., & Hung, S.-W. (2010). To give or to receive? Factors influencing members’ knowledge sharing and community promotion in professional virtual communities. Information & Management, 47(4), 226–236. doi: 10.1016/ Scholar
  12. Chiu, C.-M., Wang, E. T., Shih, F.-J., & Fan, Y.-W. (2011). Understanding knowledge sharing in virtual communities: an integration of expectancy disconfirmation and justice theories. Online Information Review, 35(1), 134–153.CrossRefGoogle Scholar
  13. Choi, N., Chengalur-Smith, I., & Nevo, S. (2015). Loyalty, ideology, and identification: an empirical study of the attitudes and behaviors of passive users of open source software. Journal of the Association for Information Systems, 16(8), 674–706.CrossRefGoogle Scholar
  14. Crowston, K., & Howison, J. (2003). The social structure of open source software development teams (No. Paper 123). Syracuse University.
  15. Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2008). Free/libre open-source software development: what we know and what we do not know. ACM Computing Surveys, 44(2), 7:1–7:35. doi: 10.1145/2089125.2089127.Google Scholar
  16. Deodhar, S. J., Saxena, K. B. C., Gupta, R. K., & Ruohonen, M. (2012). Strategies for software-based hybrid business models. The Journal of Strategic Information Systems, 21(4), 274–294. doi: 10.1016/j.jsis.2012.06.001.CrossRefGoogle Scholar
  17. Ducheneaut, N. (2005). Socialization in an open source software community: a socio-technical analysis. Computer Supported Cooperative Work, 14(4), 323–368. doi: 10.1007/s10606-005-9000-1.CrossRefGoogle Scholar
  18. Fang, Y., & Neufeld, D. (2009). Understanding sustained participation in open source software projects. Journal of Management Information Systems, 25(4), 9–50.CrossRefGoogle Scholar
  19. Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. International Journal of Qualitative Methods, 5(1), 80–92. doi: 10.1177/160940690600500107.CrossRefGoogle Scholar
  20. Fligstein, N. (1996). Markets as politics: a political-cultural approach to market institutions. American Sociological Review, 61(4), 656–673. doi: 10.2307/2096398.
  21. Granovetter, M. (1985). Economic action and social structure: the problem of embeddedness. American Journal of Sociology, 91, 481–510.CrossRefGoogle Scholar
  22. Hofmann, G., Riehle, D., Kolassa, C., & Mauerer, W. (2013). A dual model of open source license growth. In E. Petrinja, G. Succi, N. E. Ioini, & A. Sillitti (Eds.), Open source software: quality verification (pp. 245–256). Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-38928-3_18.CrossRefGoogle Scholar
  23. Jensen, C., & Scacchi, W. (2007). Role migration and advancement processes in OSSD projects: a comparative case study (pp. 364–374). Presented at the ICSE ’07: Proceedings of the 29th international conference on Software Engineering, IEEE Computer Society. doi: 10.1109/icse.2007.74
  24. Kogut, B., & Zander, U. (1996). What firms do? Coordination, identity, and learning. Organization Science, 7(5), 502–518. doi: 10.1287/orsc.7.5.502.CrossRefGoogle Scholar
  25. Lakhani, K., & von Hippel, E. (2003). How open source software works: “free” user-to-user assistance. Research Policy, 32(6), 923–943. doi: 10.1016/S0048-7333(02)00095-1.CrossRefGoogle Scholar
  26. Lakhani, K., & Wolf, R. (2003). Why hackers do what they do: understanding motivation and effort in free/open source software projects.Google Scholar
  27. Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge [England]: Cambridge University Press.CrossRefGoogle Scholar
  28. Lessig, L. (2006). Code: and other laws of cyberspace, version 2.0 (2nd ed.). New York: Basic Books.Google Scholar
  29. Levina, N., & Vaast, E. (2005). The emergence of boundary spanning competence in practice: implications for implementation and use of information systems. MIS Quarterly, 29(2), 335–363. doi: 10.2307/25148682.CrossRefGoogle Scholar
  30. Microsoft. (2015). Information on Profile Affiliations. Accessed 15 Oct 2015
  31. Molder, J. te, van Lier, B., & Jansen, S. (2011). Clopenness of systems: the interwoven nature of ecosystems. Presented at the Workshop on Software Ecosystems.Google Scholar
  32. Nielsen, J. (2006). Participation inequality: the 90-9-1 rule for social features. Nielsen Norman Group. Accessed 1 Feb 2016
  33. Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science, 5(1), 14–37. doi: 10.1287/orsc.5.1.14.CrossRefGoogle Scholar
  34. Okoli, C., & Nguyen, J. (2015). Business Models for Free and Open Source Software (SSRN Scholarly Paper No. ID 2568185). Rochester, NY: Social Science Research Network. Accessed 25 Jan 2016
  35. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. doi: 10.1037/0021-9010.88.5.879.CrossRefGoogle Scholar
  36. Preece, J., & Shneiderman, B. (2009). The reader-to-leader framework: motivating technology-mediated social participation. AIS Transactions on Human-Computer Interaction, 1(1), 13–32.CrossRefGoogle Scholar
  37. Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3), 23–49. doi: 10.1007/s12130-999-1026-0.CrossRefGoogle Scholar
  38. Riehle, D. (2010). The single-vendor commercial open course business model. Information Systems and e-Business Management, 10(1), 5–17. doi: 10.1007/s10257-010-0149-x.CrossRefGoogle Scholar
  39. Romney, A. K., Weller, S. C., & Batchelder, W. H. (1986). Culture as consensus: a theory of culture and informant accuracy. American Anthropologist, 88(2), 313–338.CrossRefGoogle Scholar
  40. Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open source software development. Management Science, 52(7), 1000–1014. doi: 10.1287/mnsc.1060.0553.CrossRefGoogle Scholar
  41. Shen, C., & Cage, C. (2015). Exodus to the real world? Assessing the impact of offline meetups on community participation and social capital. New Media & Society, 17(3), 394–414. doi: 10.1177/1461444813504275.CrossRefGoogle Scholar
  42. Stewart, K. J., & Gosain, S. (2006). The impact of ideology on effectiveness in open Source Software Development Teams. MIS Quarterly, 30(2), 291–314.CrossRefGoogle Scholar
  43. von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and specialization in open source software innovation: a case study. Research Policy, 32(7), 1217–1241. doi: 10.1016/S0048-7333(03)00050-7.CrossRefGoogle Scholar
  44. Wang, S., & Noe, R. A. (2010). Knowledge sharing: a review and directions for future research. Human Resource Management Review, 20(2), 115–131. doi: 10.1016/j.hrmr.2009.10.001.CrossRefGoogle Scholar
  45. Weller, S. C. (2007). Cultural consensus theory: applications and frequently asked questions. Field Methods, 19(4), 339–368. doi: 10.1177/1525822X07303502.CrossRefGoogle Scholar
  46. Ye, Y., & Kishida, K. (2003). Toward an understanding of the motivation of open source software developers. In 25th International Conference on Software Engineering, 2003. Proceedings (pp. 419–429). Presented at the 25th International Conference on Software Engineering, 2003. Proceedings. doi: 10.1109/ICSE.2003.1201220

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The iSchool at Florida State UniversityTallahasseeUSA

Personalised recommendations