Journal of the Knowledge Economy

, Volume 6, Issue 2, pp 296–319 | Cite as

Smart Specialisation in Cohesion Economies

  • Marek TiitsEmail author
  • Tarmo Kalvet
  • Imre Mürk


With the rise of the smart specialisation (RIS3) concept, concentrating knowledge resources and linking them to a limited number of priority economic activities have become an important concept in the R&D, innovation and cohesion policies in the European Union. We conclude from the analysis of economic performance and effectiveness of the prior higher education, R&D and innovation policies in selected European small economies and theory that several crucial issues should be considered in translating the RIS3 into effective strategies. RIS3 was born to inform R&D policy making, and it emphasises predominantly R&D-based technological innovation. Yet, it is not sufficient to focus solely on the contribution of R&D to the upgrading of existing industry, when economic cohesion and structural change in industry is sought. Development of an effective RIS3 calls for, especially in the EU cohesion economies, substantial efforts to strengthen higher education, R&D job creation and capability building in future paradigm leading high-tech areas in particular. The role of foreign direct investments and relocation of industry in structural change should also be considered carefully. Finally, proper loop-back mechanisms have to be put in place in order to foster policy learning, and introduction of necessary policy adjustments as RIS3 gets implemented.


Smart specialisation (RIS3) Higher education R&D policy Innovation policy Economic development Cohesion 



This research has been co-funded by the European Commission funded GRINCOH (Growth–Innovation–Competitiveness: Fostering Cohesion in Central and Eastern Europe) research project and the European Social Foundation through the Estonian Research and Innovation Policy Monitoring Programme of the Ministry of Education and Science of Estonia.


  1. Akamatsu, K. (1935). Waga kuni yomo kogyohin no susei [Trend of Japanese trade in woolen goods]. Shogyo keizai ronso, 13, 129–212.Google Scholar
  2. Arnold, E., Good, B., & Segerpalm, H. (2008). The GSM story—effects of research on Swedish mobile telephone developments. VINNOVA analysis, 24. Stockholm: VINNOVA.Google Scholar
  3. Bernatonyte, D. (2011). Export productivity and specialization patterns of Lithuania. Kaunas: University of Technology.Google Scholar
  4. Cattaneo, O., Gereffi, G., & Staritz, C. (Eds.). (2010). Global value chains in a postcrisis world: a development perspective. Washington: The World Bank.Google Scholar
  5. Christensen, T. A., Freireich, S., Kolar, J., & Nybergh, P. (2012). Peer-review of the Estonian research and innovation system steady progress towards knowledge society. Expert group report prepared for the European Research Area Committee. Tallinn: Ministry of Economic Affairs and Communications. Innovation Studies 19/2012.Google Scholar
  6. Cimoli, M. (Ed.). (2000). Developing innovation systems: Mexico in the global context. New York: Continuum-Pinter.Google Scholar
  7. Cooke, P. (1992). Regional innovation systems: competitive regulation in the New Europe. Geofonwi, 23, 365–382.Google Scholar
  8. Coomans, G. (2004). Atlas of prospective labour supply. Dublin: Geolabour.Google Scholar
  9. Drechsler, W., Backhaus, J. G., Burlamaqui, L., Chang, H.-J., Kalvet, T., Kattel, R., Kregel, J., & Reinert, E. S. (2006). Creative destruction management in Central and Eastern Europe: meeting the challenges of the techno-economic paradigm shift. In T. Kalvet & R. Kattel (Eds.), Creative destruction management: meeting the challenges of the techno-economic paradigm shift (pp. 15–30). Praxis Centre for Policy Studies: Tallinn.Google Scholar
  10. Dunning, J. H. (1998). Globalization, technological change and the spatial organization of economic activity. In A. D. Chandler, P. Hagstrom, & O. Solvell (Eds.), The dynamic firm: the role of technology, strategy, organization and regions. New York: Oxford University Press.Google Scholar
  11. Edquist, C., & Hommen, L. (2008). Small economy innovation systems: comparing globalisation, change, and policy in Asia and Europe. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
  12. Elg, L., & Håkansson, S. (2012). Impacts of innovation policy—lessons from VINNOVA’s impact studies. Sweden: VINNOVA.Google Scholar
  13. Erawatch. (2012). Country reports 2012 Estonia.
  14. Ernst, D., & Kim, L. (2002). Global production networks, knowledge diffusion and local capability formation. Research Policy, 31(8–9), 1417–1429.CrossRefGoogle Scholar
  15. European Commission. (2002). Innovation tomorrow. DG Enterprise Innovation Papers 28. Brussels: European Commission.Google Scholar
  16. European Commission. (2013). Sixth FP7 monitoring report. Brussels: European Commission.Google Scholar
  17. Eurostat. (2013). On-line database.
  18. Fagerberg, J., Mowery, D. C., & Nelson, R. R. (Eds.). (2004). The oxford handbook of innovation. Oxford: Oxford University Press.Google Scholar
  19. Foray, D., David, P. & Hall, B. (2009). Smart specialisation—the concept. Knowledge Economists Policy Brief 9.
  20. Foray, D., David, P. A. & Hall, B. (2011). Smart specialisation: from academic idea to political instrument, the surprising career of a concept and the difficulties involved in its implementation. MTEI Working Paper. Lausanne: Ecole Polytechnique Federale de Lausanne.
  21. Foray, D., Goddard, J., Beldarrain, X.G., Landabaso, M., McCann, P., Morgan, K., Nauwelaers, C., Ortega-Argilés, R. (2012). Guide to research and innovation strategies for smart specialisations (RIS 3).
  22. Freeman, C. (1987). National systems of innovation: the case of Japan technology policy and economics performance: lessons from Japan. London: Pinter.Google Scholar
  23. Freeman, C. (1995). The national innovation systems in historical perspective. Cambridge Journal of Economics, 19(1), 5–24.Google Scholar
  24. Freeman, C., & Lundvall, B.-Å. (Eds.). (1988). Small countries facing technological revolution. London: Pinter.Google Scholar
  25. Hollanders, H. & Es-Sadki, N. (2013). Innovation union scoreboard. Brussels: European Commission.
  26. IBS (2011). Mid-term evaluation of the adoption of the EU structural funds 2007–2013 in the fields of research and development, and higher education,õukefondide-perioodi-2007-2013-teadus--ja-arendustegevuse-ning-kõrghariduse-meetmete-rakendamise-vahehindamine.
  27. International Trade Centre (2014). Trademap.
  28. Karo, E. & Kattel, R. (2013). Public management, policy capacity and innovation. Working Papers in Technology Governance and Economic Dynamics, 52.Google Scholar
  29. Ketels, C. (2012). Sweden’s position in the global economy. Globaliseringsforum.Google Scholar
  30. Ketels, C. & Protsiv, S. (2013). Clusters and the new growth path for Europe. Working Paper no 14.
  31. Lember, V., Kattel, R., & Kalvet, T. (Eds.). (2014). Public procurement, innovation and policy. Heidelberg: Springer. International perspectives.Google Scholar
  32. Lemola, T. (2003). Transformation of the Finnish science and technology policy. Science Studies, 1, 52–67.Google Scholar
  33. Lester, R., & Sotarauta, M. (2007). Innovation, universities, and the competitiveness of regions. Helsinki: Tekes. Technology Review 214/2007.Google Scholar
  34. Leydesdorff, L., & Meyer, M. (2003). The Triple Helix University–Industry–Government relations. Scientometrics, 58(2), 191–203.CrossRefGoogle Scholar
  35. Lipsey, R. G., Carlaw, K. I., & Bekar, C. T. (2005). Economic transformations. General purpose technologies and long-term economic growth. Oxford: Oxford University Press.Google Scholar
  36. Lundin, P., & Stenlas, N. (2010). Technology, state initiative and national myths in cold war Sweden: an introduction. In P. Lundin, N. Stenlas, & J. Gribbe (Eds.), Science for welfare and warfare. Technology and state initiative in Cold War. Sweden. Sagamore Beach: Science History Publications/USA.Google Scholar
  37. Lundvall, B.-Å. (1988). Innovation as an interactive process: from user–producer interaction to the national system of innovation. In: Dosi, G., Freeman, C., Nelson, R., Silverberg, G., Soete, L. (Eds.), Technical Change and Economic Theory. Pinter, London, pp. 349–369.Google Scholar
  38. Lundvall, B.-Å. (Ed.). (1992). National innovation systems: towards a theory of innovation and interactive learning. London: Pinter.Google Scholar
  39. Lundvall, B.-Å., Joseph, K. J., Chaminade, C., & Vang, J. (Eds.). (2009). Handbook of innovation systems and developing countries: building domestic capabilities in a global setting. Cheltenham: Edward Elgar.Google Scholar
  40. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264.CrossRefGoogle Scholar
  41. Maliranta, M., Rouvinen, P., & Ylä-Anttila, P. (2010). Finland’s path to the global productivity frontier through creative destruction. International Productivity Monitor, 20, 68–84.Google Scholar
  42. Moncada-Paternò-Castello, P., Ciupagea, C., Smith, K., Tübke, A., & Tubbs, M. (2010). Does Europe perform too little corporate R&D? A comparison of EU and non-EU corporate R&D performance. Research Policy, 39, 523–536.CrossRefGoogle Scholar
  43. Narula, R., & Dunning, J. H. (2000). Industrial development, globalization and multinational enterprises: new realities for developing countries. Oxford Development Studies, 28(2), 141–167.CrossRefGoogle Scholar
  44. Nelson, R. R. (1993). National innovation systems a comparative analysis. New York: Oxford University Press.Google Scholar
  45. OECD. (2012). Science, technology and industry outlook. Paris: OECD.Google Scholar
  46. OECD. (2013a). Education at a glance. Paris: OECD.Google Scholar
  47. OECD. (2013c). Reviews of innovation policy: Sweden. Paris: OECD.Google Scholar
  48. Paliokaitė, A. & Kubbo, K. (2013). DG expert group advising on development of smart specialisation in Lithuania. European Commission. Brussels: DG for Research and Innovation.Google Scholar
  49. Perez, C. (1983). Structural change and the assimilation of new technologies in the economic and social system. Futures, 15, 357–375.CrossRefGoogle Scholar
  50. Perez, C. (2002). Technological revolutions and financial capital: the dynamics of bubbles and golden ages. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
  51. Perez, C. (2006). Respecialisation and the deployment of the ICT paradigm: an essay on the present challenges of globalization. In R. Compañó, C. Pascu, A. Bianchi, J.-C. Burgelman, S. Barrios, M. Ulbrich, & I. Maghiros (Eds.), The future of the information society in Europe: contributions to the debate (pp. 27–56). Seville: European Commission, Directorate General Joint Research Centre.Google Scholar
  52. Pollard, S. (1973). Industrialisation and the European economy. The Economic History Review, 26(4), 636–648.CrossRefGoogle Scholar
  53. Pollard, S. (1981). Peaceful conquest: the industrialization of Europe, 1760–1970. Oxford: Oxford University Press.Google Scholar
  54. Polt, W., Koch, P., & Wolters, A. (2007). Evaluation of Estonian RTDI policy mix. Results of OMC peer review report 2007. Country report for Estonia. Innovation studies 10. Tallinn: Ministry of Economic Affairs and Communications.Google Scholar
  55. Porter, M. (1990). Competitive advantage of nations. New York: Free Press.Google Scholar
  56. Radoševic, S. (1999). Restructuring and reintegration of science and technology systems in economies in transition, Final Report of the TSER Project, contract No: SOE1-CT95-1008.Google Scholar
  57. Radoševic, S. & Reid, A. (2006). Innovation policy for a knowledge-based economy in Central and Eastern Europe: driver of growth or new layer of bureaucracy? In: Piech, K. & Radoševic, S. (Eds.), The knowledge-based economy in Central and East European countries; Countries and Industries in a Process of Change, Palgrave Macmillan, 295–313.Google Scholar
  58. Reinert, E. S. (1999). The role of the state in economic growth. Journal of Economic Studies, 26(4/5), 268–326.CrossRefGoogle Scholar
  59. Reinert, E. S. (2007). How rich countries got rich and why poor countries stay poor. London: Constable & Robinson.Google Scholar
  60. Rose, R. (1993). Lesson-drawing in public policy: a guide to learning across time and space. Chatham: Chatham House.Google Scholar
  61. Rouvinen, P., & Ylä-Anttila, P. (2003). Little Finland’s transformation to a wireless giant. In S. Dutta, B. Lanvin, & F. Paua (Eds.), The global information technology report 2003–2004 (pp. 87–108). New York: Oxford University Press.Google Scholar
  62. Sabel, C. & Saxenian, A. (2008). A fugitive success: Finland’s economic future. Sitra reports 80.Google Scholar
  63. Schumpeter, J. A. (1950). Capitalism, socialism and democracy (3rd ed.). New York: Harper.Google Scholar
  64. Schwab, K. (Ed.). (2013). The global competitiveness report. Geneva: World Economic Forum.Google Scholar
  65. Smith, A. (1991). The wealth of nations. London: Campbell.Google Scholar
  66. Statistics Lithuania. (2014). Statistics database.
  67. Tiits, M. (Ed.). (2013). The competitiveness of the forest and wood industry of Estonia. Tartu: Institute of Baltic Studies.Google Scholar
  68. Tiits, M. & Kalvet, T. (2012). Nordic small countries in the global high-tech value chains: the case of telecommunications systems production in Estonia. The Other Canon Foundation and Tallinn University of Technology Working Papers in Technology Governance and Economic Dynamics 38.Google Scholar
  69. Tiits, M., & Kalvet, T. (2013). Intelligent piggybacking: a foresight policy tool for small catching-up economies. International Journal of Foresight and Innovation Policy, 9(2/3/4), 253–268.CrossRefGoogle Scholar
  70. Tiits, M., Kattel, R., Kalvet, T., & Kaarli, R. (2003). Competitiveness and future outlooks of the Estonian economy: R&D and innovation policy review. Tallinn: State Chancellery.Google Scholar
  71. Tiits, M., Kattel, R., Kalvet, T., & Tamm, D. (2008). Catching up, forging ahead or falling behind? Central and Eastern European development in 1990–2005. Innovation: The European Journal of Social Science Research, 21(1), 65–85.Google Scholar
  72. Times Higher Education (2014). World University Rankings 2013.
  73. Varblane, U., Eamets, R., Haldma, T., Kaldaru, H., Masso, J., Mets, T., Paas, T., Reiljan, J., Sepp, J., Türk, K., Ukrainski, K., Vadi, M., & Vissak, T. (2008). Eesti majanduse konkurentsivõime hetkeseis ja tulevikuväljavaated. Aruande lühiversioon. Tallinn: Eesti Arengufond.Google Scholar
  74. Vernon, R. (1966). International investment and international trade in the product cycle. Quarterly Journal of Economics, 80(2), 190–207.CrossRefGoogle Scholar
  75. Veugelers, R. (Ed.). (2009). The evaluation of the Finnish national innovation system—full report. Helsinki: The Research Institute of the Finnish Economy.Google Scholar
  76. Walsh, V. (1988). Technology and competitiveness of small countries: a review. In C. Freeman & B.-Å. Lundvall (Eds.), Small countries facing technological revolution (pp. 37–66). London: Pinter.Google Scholar
  77. Wells, L. T. (Ed.). (1972). The product life cycle and international trade. Boston: Harvard University.Google Scholar
  78. Ylä-Anttila, P., & Palmberg, C. (2007). Economic and industrial policy transformations in Finland. Journal of Industry, Competition and Trade, 7(3–4), 169–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Baltic StudiesTartuEstonia
  2. 2.Ragnar Nurkse School of Innovation and GovernanceTallinn University of TechnologyTallinnEstonia

Personalised recommendations