Agusdinata, DB (2008). Exploratory modeling and analysis: a promising method to deal with deep uncertainty. Ph.D. thesis, Delft University of Technology.
Ascher, W. (1978). Forecasting: an appraisal for policy makers and planners. Baltimore: Johns Hopkins University Press.
Google Scholar
Axelrod, R. (1997). Advancing the art of simulation in the social sciences. Complexity, 3, 16–22.
Article
Google Scholar
Bankes, S. (1993). Exploratory modeling for policy analysis. Operations Research, 4, 435–449.
Article
Google Scholar
Bankes, S. (1994). Exploring the foundations of artificial societies: experiments in evolving solutions to N-player Prisoner’s dilemma. In R. Brooks & P. Maes (Eds.), Artifical life IV. Cambridge: MIT Press.
Google Scholar
Bankes, S., & Margoliash, D. (1993). Parametric modeling of the temporal dynamics of neuronal responses using connectionist architectures. Journal of Neurophysiology, 69, 980–991.
Google Scholar
Ben Haim, Y. (2001). Information-gap decision theory: decision under severe uncertainty. Waltham: Academic Press.
Google Scholar
Ben Haim, Y. (2004). Uncertainty, probability and information-gaps. Reliability Engineering and System Safety, 85, 249–266.
Article
Google Scholar
Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand. Cambridge: MIT Press.
Google Scholar
Breeze, P. (2005). Power generation technologies. Oxford: Newnes.
Google Scholar
Brooks, A., Bennet, B., & Bankes, S. (1999). An application of exploratory analysis: the weapon mix problem. Military Operations Research, 4, 67–80.
Article
Google Scholar
Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: a participatory computer-assisted approach to scenario discovery. Technological Forecasting and Social Change, 77, 34–49.
Article
Google Scholar
Cambell, D., Crutchfield, J., Farmer, D., & Jen, E. (1985). Experimental mathematics—the role of computation in nonlinear science. Communications of the ACM, 28, 374–384.
Article
Google Scholar
Chong, I. G., & Jun, C. H. (2008). Flexible patient rule induction method for optimizing process variables in discrete types. Expert Systems with Applications, 34, 3014–3020.
Article
Google Scholar
Davison, J. (2007). Performance and costs of power plants with capture and storage of CO2. Energy, 32, 1163–1176.
Article
Google Scholar
de Vries, L. J. (2004). Securing the public interest in electricity generation markets: the myths of the invisible hand and the copper plate. PhD thesis, Delft University of Technology.
Dessai, S., Hulme, M., & Lempert, R. (2009). Do we need better predictions to adapt to a changing climate? Eos, 90, 111–112.
Article
Google Scholar
Enserink, B., Hermans, L., Kwakkel, J. H., Thissen, W., Koppenjan, J. F. M., & Bots, P. W. G. (2010). Policy analysis of multi-actor systems. Lemma: Utrecht.
Google Scholar
Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Washington D.C: Brookings Institution Press.
Google Scholar
Friedman, J. H., & Fisher, N. I. (1999). Bump hunting in high-dimensional data. Statistics and Computing, 9, 123–143.
Article
Google Scholar
Garcia, R. (2005). Uses of agent-based modeling in innovation/new product development research. The Journal of Product Innovation Management, 22, 380–398.
Article
Google Scholar
Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case study. Research Policy, 1257–1274.
Geels, F. W. (2005). Technological transitions and system innovations: a co-evolutionary and socio-technical analysis. Cheltenham: Edward Elgar Publishing, Inc.
Book
Google Scholar
Gensch, D. H., & Recker, W. W. (1979). The multinomial, multiattribute logit choice model. Journal of Marketing Research, 16, 124–132.
Article
Google Scholar
Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. Berkshire: Open University Press.
Google Scholar
Goodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77, 355–368.
Article
Google Scholar
Green, R. (2004). Did English generators play Cournot? Capacity withholding in the electricity pool. Cambridge Working Papers in Economics. Cambridge: University of Cambridge.
Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton: Princeton University Press.
Google Scholar
Grin, J., Rotmans, J., & Schot, J. (Eds.). (2010). Transitions to sustainable development. New directions in the study of long term transformative change. New York/London: Routledge.
Google Scholar
Groves, D. G., & Lempert, R. J. (2007). A New analytic method for finding policy-relevant scenarios. Global Environmental Change, 17, 73–85.
Article
Google Scholar
Hamarat, C., Kwakkel, J. H. & Pruyt, E. (2012). Energy transitions: adaptive policy making under deep uncertainty. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2012.10.004.
Hodges, J. S. (1991). Six (or so) things you can do with a bad model. Operations Research, 39, 355–365.
Article
Google Scholar
Hodges, J. S., & Dewar, J. A. (1992). Is it you or your model talking? A framework for model validation. Santa Monica: RAND.
Google Scholar
Hughes, T. P. (1983). Networks of power: electrification in western society, 1880–1930. Baltimore: Johns Hopkins University Press.
Google Scholar
Jones, E., Oliphant, T., Peterson, P. & Others, A. (2001). SciPy: open source scientific tools for Python.
Keeney, R., & Gregory, R. (2005). Selecting attributes to measure the achievement of objectives. Operations Research, 53, 1–11.
Article
Google Scholar
Keeney, R., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and values tradeoffs. Cambridge: Cambridge University Press.
Book
Google Scholar
Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technology Analysis and Strategic Management, 10, 175–195.
Article
Google Scholar
Kwakkel, J. H., Auping, W. & Pruyt, E. (2012). Dynamic scenario discovery under deep uncertainty: the future of copper. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2012.09.012.
Kwakkel, J. H. & Pruyt, E. (2012). Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2012.10.005.
Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2012). Assessing the efficacy of adaptive airport strategic planning: results from computational experiments. Environment and Planning B: Planning and Design, 39, 533–550.
Article
Google Scholar
Lako, P., & Seebregts, A. (1998). Characterisation of power generation options for the 21st century: report on behalf of macro task E1. Petten: ECN.
Google Scholar
Lempert, R. J. (2002). A new decision sciences for complex systems. Proceedings of the National Academy of Sciences of the United States of America, 99, 7309–7313.
Article
Google Scholar
Lempert, R. J., Popper, S., & Bankes, S. (2002). Confronting surprise. Social Science Computer Review, 20, 420–439.
Article
Google Scholar
Lempert, R. J., Popper, S., & Bankes, S. (2003). Shaping the next one hundred years: new methods for quantitative, long term policy analysis. Santa Monica: RAND.
Google Scholar
Lempert, R. J., Bryant, B. P., & Bankes, S. (2008). Comparing algorithms for scenario discovery. Santa Monica: Rand.
Google Scholar
Loorbach, D. (2007). Transition management: new mode of governance for sustainable development. Utrecht: International Books.
Google Scholar
McInerney, D., Lempert, R., & Keller, K. (2012). What are robust strategies in the face of uncertain climate threshold responses. Climate Change, 112, 547–568.
Article
Google Scholar
Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: an introduction to computational models of social life. Princeton: Princeton University Press.
Google Scholar
North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences creating three implementations of the repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation, 16, 125.
Article
Google Scholar
Orrel, D., & McSharry, P. (2009). System economics: overcoming the pitfalls of forecasting models via a multidisciplinary approach. International Journal of Forecasting, 25, 734–743.
Article
Google Scholar
Park, G., & Lempert, R. (1998). The class of 2014: preserving access to california higher education. Santa Monica: RAND.
Google Scholar
Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., & D’Haeseleer, W. (2005). Distributed generation: definition, benefits and issues. Energy Policy, 33, 787–798.
Article
Google Scholar
Pilkey, O. H., & Pilkey-Jarvis, L. (2007). Useless arithmetic: why environmental scientists can’t predict the future. New York: Columbia University Press.
Google Scholar
Pirog, R. L., Stamos, S., Cohn, S., Knapp, R. H., & Simon, R. M. (1987). Energy economics: theory and policy. Prentice-Hall: Englewood Cliffs.
Google Scholar
Rödel, J. G. (2008). Ecology, economy and security of supply of the dutch electricity supply system: a scenario based future analysis. PhD thesis, Delft University of Technology.
Rotmans, J., Kemp, R., & Asselt, M. V. (2001). More evolution than revolution: transition management in public policy. Foresight, 3, 15–31.
Article
Google Scholar
Schwartz, P. (1991). The art of the long view. Chichester: Wiley.
Google Scholar
Schwarz, N., & Ernst, A. (2009). Agent-based modeling of the diffusion of environmental innovations - an empirical approach. Technological Forecasting and Social Change, 76, 497–511.
Article
Google Scholar
Seebregts, A. (2005). Appendix B: description of the POWERS model (in Dutch). In: A. J. Seebregts, M. J. J. Scheepers, R. Jansma, & J. F. A. V. Hienen (eds.) Kerncentrale Borssele na 2013. Gevolgen van beëindiging of voortzetting van de bedrijfsvoering. Petten: ECN.
Sterman, J. D. (2002). All models are wrong: reflections on becoming a systems scientist. System Dynamics Review, 18, 501–531.
Article
Google Scholar
Timmermans, J., de Haan, H., & Squazzoni, F. (2008). Computational and mathematical approaches to societal transitions. Computational and Mathematical Organization Theory, 14, 391–414.
Article
Google Scholar
van Damme, E. (2005). Liberalizing the Dutch electricity market: 1998–2004. Tilburg: CentER - Tilburg University.
Google Scholar
van den Broek, M., Faaij, A., & Turkenburg, W. (2008). Planning for an electricity sector with carbon capture and storage: case of the Netherlands. International Journal of Greenhouse Gas Control, 2, 105–129.
Article
Google Scholar
van der Heijden, K. (1996). Scenarios: the art of strategic conversation. Chichester: Wiley.
Google Scholar
van der Pas, J. W. G. M., Walker, W. E., Marchau, V. A. W. J., van Wee, B., & Agusdinata, B. (2010). Exploratory MCDA for handling deep uncertainties: the case of intelligent speed adaptation implementation. Journal of Multicriteria Decision Analysis, 17, 1–23.
Article
Google Scholar
van Rossum, G. (1995). Python reference manual. CWI Report CS-R9525.
Vogstad, K.-O. (2004). A system dynamics analysis of the Nordic electricity market: the transition from fossil fuelled toward a renewable supply within a liberalised electricity market. PhD thesis, Norwegian University of Science and Technology.
Voorspools, K. (2004). The modelling of large electricity-generation systems with applications in emission-reduction scenarios and electricity trade. PhD thesis, Leuven KU.
Voorspools, K., & D’Haeseleer, W. (2003). The impact of the implementation of cogeneration in a given energetic context. IEEE Transactions on Energy Conversion, 18, 135–141.
Article
Google Scholar
Wittmann, T. (2008). Agent-based models of energy investment decisions. Heidelberg: Physicrra.
Google Scholar
Yücel, G. (2010). Analyzing transition dynamics: the actor-option framework for modelling socio-technical systems. PhD thesis, Delft University of Technology.
Yücel, G., & van Daalen, C. (2012). A simulation-based analysis of transition pathways for the Dutch electricity system. Energy Policy, 42, 557–568.
Article
Google Scholar