Skip to main content
Log in

Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4′S Central Lau Spreading Center, Southwest Pacific

  • Articles
  • Marine Geology
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center. During 1990s, that volcanic structure was reported active and sulphide samples were collected by MIR submersible. A section of a chimney-like structure from the crater-floor was studied here. The Fe-depleted sphalerites, and Co-depleted pyrites in that chimney were similar to those commonly found in low to moderate temperature (<300°C) sulphides from sediment-starved hydrothermal systems. Bulk analyses of three parts of that chimney section showed substantial enrichment of Zn (18%–20%) and Fe (14%-27%) but depletion of Cu (0.8%–1.3%). In chondrite-normalized rare earth element-patterns, the significant negative Ce-anomalies (Ce/Ce*=0.27–0.39) and weakly positive Eu-anomalies (Eu/Eu*=1.60–1.68) suggested sulphide mineralisation took place from reduced low-temperature fluid. The depleted concentration of lithophiles in this sulphide indicates restricted contribution of sub-ducting plate in genesis of source fluid as compared to those from other parts of Lau Spreading Centre. Uniform mineralogy and bulk composition of subsamples across the chimney section suggests barely any alteration of fluid composition and/or mode of mineralisation occurred during its growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anders E, Grevesse N. 1989. Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197–214, doi: https://doi.org/10.1016/0016-7037(89)90286-X

    Article  Google Scholar 

  • Barrett T J, Jarvis I, Jarvis K E. 1990. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge. Geology, 18(7): 583–586, doi: https://doi.org/10.1130/0091-7613(1990)018<0583:REEGOM>2.3.CO;2

    Article  Google Scholar 

  • Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1–2): 123–131

    Article  Google Scholar 

  • Bendel V, Fouquet Y, Auzende J M, et al. 1993. The White Lady hydrothermal field, north Fiji Back-Arc Basin, Southwest Pacific. Economic Geology, 88(8): 2237–2245, doi: https://doi.org/10.2113/gsecongeo.88.8.2237

    Article  Google Scholar 

  • Dekov V M, Lalonde S V, Kamenov G D, et al. 2015. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S). Chemical Geology, 415: 126–140, doi: https://doi.org/10.1016/j.chemgeo.2015.09.017

    Article  Google Scholar 

  • Embley R W, Baker E T, ChadwickJr W W, et al. 2004. Explorations of Mariana arc volcanoes reveal new hydrothermal systems. EOS, Transactions American Geophysical Union, 85(4): 37–40

    Article  Google Scholar 

  • Evans G N, Tivey M K, Seewald J S, et al. 2017. Influences of the Tonga Subduction Zone on seafloor massive sulfide deposits along the Eastern Lau Spreading Center and Valu Fa Ridge. Geochimica et Cosmochimica Acta, 215: 214–246, doi: https://doi.org/10.1016/j.gca.2017.08.010

    Article  Google Scholar 

  • Falloon T J, Malahoff A, Zonenshain L P, et al. 1992. Petrology and Geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S. Mineralogy and Petrology, 47(1): 1–35, doi: https://doi.org/10.1007/BF01165295

    Article  Google Scholar 

  • Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu−Zn−Co−Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: American Geophysical Union, 321–367

    Chapter  Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou J L, et al. 1991. Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology, 19(4): 303–306, doi: https://doi.org/10.1130/0091-7613(1991)019<0303:HAITLB>2.3.CO;2

    Article  Google Scholar 

  • Glasby G P, Iizasa K, Yuasa M, et al. 2000. Submarine hydrothermal mineralization on the Izu–bonin arc, south of Japan: an overview. Marine Georesources & Geotechnology, 18(2): 141–176

    Article  Google Scholar 

  • Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3–4): 299–339

    Article  Google Scholar 

  • Grant H L J, Hannington M D, Petersen S, et al. 2018. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71, doi: https://doi.org/10.1016/j.chemgeo.2018.08.019

    Article  Google Scholar 

  • HawkinsJr J W. 1995. The geology of the Lau Basin. In: Taylor B, ed. Backarc Basins: Tectonics and Magmatism. Boston: Springer, 63–138

    Chapter  Google Scholar 

  • Hein J R, de Ronde C E J, Koski R A, et al. 2014. Layered hydrothermal barite-sulfide mound field, East Diamante caldera, Mariana volcanic arc. Economic Geology, 109(8): 2179–2206, doi: https://doi.org/10.2113/econgeo.109.8.2179

    Article  Google Scholar 

  • Hongo Y, Nozaki Y. 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya ridge vent field, Okinawa Trough. Geochemical Journal, 35(5): 347–354, doi: https://doi.org/10.2343/geochemj.35.347

    Article  Google Scholar 

  • James R H, Elderfield H. 1996. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology, 24(12): 1147–1150, doi: https://doi.org/10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2

    Article  Google Scholar 

  • James R H, Green D R H, Stock M J, et al. 2014. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochimica et Cosmochimica Acta, 139: 47–71, doi: https://doi.org/10.1016/j.gca.2014.04.024

    Article  Google Scholar 

  • Karig D E. 1970. Ridges and basins of the Tonga-Kermadec island arc system. Journal of Geophysical Research, 75(2): 239–254, doi: https://doi.org/10.1029/JB075i002p00239

    Article  Google Scholar 

  • Keith M, Haase K M, Schwarz-Schampera U, et al. 2014. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, 42(8): 699–702, doi: https://doi.org/10.1130/G35655.1

    Article  Google Scholar 

  • Keith M, Häckel F, Haase K M, et al. 2016. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72: 728–745, doi: https://doi.org/10.1016/j.oregeorev.2015.07.012

    Article  Google Scholar 

  • Kim J, Son S K, Son J W, et al. 2009. Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau Basin. Geochemical Journal, 43(1): 1–13, doi: https://doi.org/10.2343/geochemj.0.0164

    Article  Google Scholar 

  • Koski R A, Jonasson I R, Kadko D C, et al. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 99(B3): 4813–4832, doi: https://doi.org/10.1029/93JB02871

    Article  Google Scholar 

  • Lehrmann B, Stobbs I J, Lusty P A J, et al. 2018. Insights into extinct seafloor massive sulfide mounds at the TAG, Mid-Atlantic ridge. Minerals, 8(7): 302, doi: https://doi.org/10.3390/min8070302

    Article  Google Scholar 

  • Lisitzin A P, Lukashin V N, Gordeev V V, et al. 1997. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginal and back-arc basins. Marine Geology, 142(1–4): 7–45

    Article  Google Scholar 

  • Malahoff A, Falloon T. 1991. Preliminary report of the RV Akademik Mstislav Keldysh/ MIR cruise 1990, Lau Basin Leg (May 7–21), on behalf of the Keldysh/ Mir Science Team. http://pacific-data.sprep.org/dataset/preliminary-report-akademik-mstislav-keldyshmir-cruise-1990-lau-basin-leg-may-7-21-1[2022-5-1]

  • Maslennikov V V, Cherkashov G, Artemyev D A, et al. 2020. Pyrite varieties at Pobeda hydrothermal fields, Mid-Atlantic ridge 17°07′–17°08′N: LA-ICP-MS data deciphering. Minerals, 10(7): 622, doi: https://doi.org/10.3390/min10070622

    Article  Google Scholar 

  • Maslennikov V V, Maslennikova S P, Large R R, et al. 2017. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geology Reviews, 85: 64–106, doi: https://doi.org/10.1016/j.oregeorev.2016.09.012

    Article  Google Scholar 

  • Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2020. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2°S). Ore Geology Reviews, 116: 103209, doi: https://doi.org/10.1016/j.oregeorev.2019.103209

    Article  Google Scholar 

  • Mills R A, Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N mid-Atlantic ridge. Geochimica et Cosmochimica Acta, 59(17): 3511–3524, doi: https://doi.org/10.1016/0016-7037(95)00224-N

    Article  Google Scholar 

  • Mottl M J, Seewald J S, Wheat C G, et al. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta, 75(4): 1013–1038, doi: https://doi.org/10.1016/j.gca.2010.12.008

    Article  Google Scholar 

  • Münch U, Blum N, Halbach P. 1999. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge. Chemical Geology, 155(1–2): 29–44

    Article  Google Scholar 

  • Münch U, Lalou C, Halbach P, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E—mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3–4): 341–349

    Article  Google Scholar 

  • Paropkari A L, Ray D, Balaram V, et al. 2010. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. Journal of Asian Earth Sciences, 38(3–4): 121–130

    Article  Google Scholar 

  • Parson L M, Pearce J A, Murton B J, et al. 1990. Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, Southwest Pacific. Geology, 18(5): 470–473, doi: https://doi.org/10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2

    Article  Google Scholar 

  • Pearce J A, Ernewein M, Bloomer S H, et al. 1994. Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. Geological Society, London, Special Publications, 81(1): 53–75

    Article  Google Scholar 

  • Perrin A, Goes S, Prytulak J, et al. 2018. Mantle wedge temperatures and their potential relation to volcanic arc location. Earth and Planetary Science Letters, 501: 67–77, doi: https://doi.org/10.1016/j.epsl.2018.08.011

    Article  Google Scholar 

  • Ray D, Banerjee R, Balakrishnan S, et al. 2017. S- and Sr-isotopic compositions in barite–silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid. International Journal of Earth Sciences, 106(5): 1723–1733, doi: https://doi.org/10.1007/s00531-016-1381-5

    Article  Google Scholar 

  • Ray D, Banerjee R, Mazumder A, et al. 2018. Mineralogical and geochemical variation in hydrothermal sulfides from Vienna Woods field, Manus Basin, Papua New Guinea: constraints on their evolution. Acta Oceanologica Sinica, 37(4): 22–33, doi: https://doi.org/10.1007/s13131-018-1194-4

    Article  Google Scholar 

  • Ray D, Kota D, Das P, et al. 2014. Microtexture and distribution of minerals in hydrothermal barite-silica chimney from the Franklin Seamount, SW Pacific: Constraints on mode of formation. Acta Geologica Sinica-English Edition, 88(1): 213–225, doi: https://doi.org/10.1111/1755-6724.12192

    Article  Google Scholar 

  • Scott S D. 1983. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47(345): 427–435, doi: https://doi.org/10.1180/minmag.1983.047.345.03

    Article  Google Scholar 

  • Stoffers P, Worthington T J, Schwarz-Schampera U, et al. 2006. Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, Southwest Pacific. Geology, 34(6): 453–456, doi: https://doi.org/10.1130/G22227.1

    Article  Google Scholar 

  • Sun Zhilei, Zhou Huaiyang, Yang Qunhui, et al. 2012. Growth model of a hydrothermal low-temperature Si-rich chimney: Example from the CDE hydrothermal field, Lau Basin. Science China Earth Sciences, 55(10): 1716–1730, doi: https://doi.org/10.1007/s11430-012-4485-1

    Article  Google Scholar 

  • Suzuki R, Ishibashi J I, Nakaseama M, et al. 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resource Geology, 58(3): 267–288, doi: https://doi.org/10.1111/j.1751-3928.2008.00061.x

    Article  Google Scholar 

  • Tivey M K. 1995. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction. Geochimica et Cosmochimica Acta, 59(10): 1933–1949, doi: https://doi.org/10.1016/0016-7037(95)00118-2

    Article  Google Scholar 

  • Wang Shujie, Li Huaiming, Zhai Shikui, et al. 2017a. Geochemical features of sulfides from the deyin-1 hydrothermal field at the southern Mid-Atlantic ridge near 15°S. Journal of Ocean University of China, 16(6): 1043–1054, doi: https://doi.org/10.1007/s11802-017-3316-6

    Article  Google Scholar 

  • Wang Shujie, Li Huaiming, Zhai Shikui, et al. 2017b. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge. Acta Oceanologica Sinica, 36(2): 22–34, doi: https://doi.org/10.1007/s13131-016-0961-3

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159: 16–41, doi: https://doi.org/10.1016/j.gca.2015.03.020

    Article  Google Scholar 

  • Zellmer K E, Taylor B. 2001. A three-plate kinematic model for Lau basin opening. Geochemistry, Geophysics, Geosystems, 2(5): 2000GC000106

    Article  Google Scholar 

  • Zeng Zhigang, Ma Yao, Yin Xuebo, et al. 2015. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems. Geochemistry, Geophysics, Geosystems, 16(8): 2679–2693

    Article  Google Scholar 

  • Zhang Xia, Zhai Shikui, Yu Zenghui, et al. 2018. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough. Journal of Marine Systems, 180: 124–131, doi: https://doi.org/10.1016/j.jmarsys.2016.11.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-NIO, Goa for providing necessary facilities for this study. Anil L. Paropkari is highly grateful to Alexander P. Lisitsyn for inviting him to participate in the cruise on-board R/V Akademik Mstislav Keldysh and sharing sulphide samples to undertake scientific investigation. Thanks to Prabhu and Khedekar for XRD and EPMA analyses, respectively. This manuscript has CSIR-NIO contribution No. 6976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durbar Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, D., Paropkari, A.L. Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4′S Central Lau Spreading Center, Southwest Pacific. Acta Oceanol. Sin. 42, 93–101 (2023). https://doi.org/10.1007/s13131-022-2121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-022-2121-2

Key words

Navigation