Skip to main content
Log in

Classification of ice and water in the Arctic using radar altimeter and microwave radiometer data from HY-2B satellite

  • Articles
  • Marine Information Science
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Several Chinese marine satellites have been launched in recent years. Monitoring sea ice and the ocean in the Arctic is of great importance for climate research. Sea ice in the Arctic has changed rapidly during the past few decades with respect to the extent and thickness. In this study, we applied combined passive and active microwave data from the Chinese HaiYang-2B (HY-2B) satellite to classify ice and sea water in the Arctic. We use data from a radar altimeter (RA) and a calibration microwave radiometer (CMR) to discriminate between ice and water by applying several approaches (1) the single parameter threshold criteria, (2) the multi-parameters linear segmentations and (3) the K-means clustering. The results yielded by these methods were in good agreement (classification accuracy >95%) with the Satellite Application Facility on Ocean and Sea Ice products between November and April. For other months (May–October), however, the agreement was less good (lowest classification accuracy approximate 85% in summer). A hybrid approach combined with graphical ice edges detection and microwave radar waveform analysis is therefore developed. A visual comparison with SAR images suggested the hybrid approach results greatly improved the ice and water discrimination in summer. This study demonstrated that multi-sensors (RA and CMR) configurations from HY satellites can offer comparable polar earth observation to the European Space Agency and NOAA satellite products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aaboe S, Breivik L A, Eastwood S. 2021. Algorithm theoretical basis document for the global sea-ice edge and type product. OSI-403-C & EUMETSAT, 250: 1–34

    Google Scholar 

  • Aagaard K, Carmack E C. 1994. The arctic ocean and climate: a perspective. In: Johannessen O M, Muench R D, Overland J E, eds. The Polar Oceans and Their Role in Shaping the Global Environment. Washington: American Geophysical Union, 5–20

    Google Scholar 

  • Batoula S. 2011. ENVISAT ALTIMETRY Level 2 user manual V 1.4. Paris: European Space Agency

    Google Scholar 

  • Bernard R, Le Cornec A, Eymard L, et al. 1993. The microwave radiometer aboard ERS-1.1. Characteristics and performances. IEEE Transactions on Geoscience and Remote Sensing, 31(6): 1186–1198, doi: https://doi.org/10.1109/36.317444

    Article  Google Scholar 

  • Bronner E, Guillot A, Picot N. 2013. SARAL/AltiKa Products Handbook: SALP-MU-M-OP-15984-CN. Toulouse: Centre National d’Etudes Spatiales

    Google Scholar 

  • Cavalieri D J, Crawford J P, Drinkwater M R, et al. 1991. Aircraft active and passive microwave validation of sea ice concentration from the defense meteorological satellite program special sensor microwave imager. Journal of Geophysical Research: Oceans, 96(C12): 21989–22008, doi: https://doi.org/10.1029/91JC02335

    Article  Google Scholar 

  • Comiso J C. 1995. SSM/I sea ice concentrations using the bootstrap algorithm. Washington: National Aeronautics and Space Administration, 4–7

    Google Scholar 

  • Eppler D T, Farmer L D, Lohanick A W, et al. 1992. Passive microwave signatures of sea ice. In: Carsey F D, ed. Microwave Remote Sensing of Sea Ice. Washington, DC: American Geophysical Union, 47–71

    Chapter  Google Scholar 

  • Fleming H E, Grody N C, Kratz E J. 1991. The forward problem and corrections for the SSM/T satellite microwave temperature sounder. IEEE Transactions on Geoscience and Remote Sensing, 29(4): 571–583, doi: https://doi.org/10.1109/36.135819

    Article  Google Scholar 

  • Forgy E W. 1965. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21: 768–769

    Google Scholar 

  • Fu L L, Christensen E J, Yamarone C A Jr, et al. 1994. TOPEX/POSEIDON mission overview. Oceanographic Literature Review, 99(C12): 24369–24381

    Google Scholar 

  • Gill J P S, Yackel J J. 2012. Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types. Canadian Journal of Remote Sensing, 38(3): 306–323, doi: https://doi.org/10.5589/m12-025

    Article  Google Scholar 

  • Gloersen P. 1992. Arctic and Antarctic Sea Ice, 1978–1987: Satellite Passive-Microwave Observations and Analysis. Washington: Scientific and Technical Information Program, National Aeronautics and Space Administration, 306

    Google Scholar 

  • Jiang Xingwei, Lin Mingsen, Liu Jianqiang, et al. 2012. The HY-2 satellite and its preliminary assessment. International Journal of Digital Earth, 5(3): 266–281, doi: https://doi.org/10.1080/17538947.2012.658685

    Article  Google Scholar 

  • Jiang Chengfei, Lin Mingsen, Wei Hao. 2019. A study of the technology used to distinguish sea ice and seawater on the Haiyang-2A/B (HY-2A/B) altimeter data. Remote Sensing, 11(12): 1490, doi: https://doi.org/10.3390/rs11121490

    Article  Google Scholar 

  • Jiang Maofei, Xu Ke, Jia Yongjun, et al. 2015. Evaluation of HY-2B altimeter products over ocean. In: 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI: IEEE, 5858–5861

    Google Scholar 

  • Keihm S J, Janssen M A, Ruf C S. 1995. TOPEX/Poseidon microwave radiometer (TMR). III. Wet troposphere range correction algorithm and pre-launch error budget. IEEE Transactions on Geoscience and Remote Sensing, 33(1): 147–161, doi: https://doi.org/10.1109/36.368213

    Article  Google Scholar 

  • Kouraev A V, Crétaux J F, Lebedev S A, et al. 2011. Satellite altimetry applications in the Caspian Sea. In: Vignudelli S, Kostianoy A, Cipollini P, et al., eds. Coastal Altimetry. Berlin: Springer, 331–366

    Chapter  Google Scholar 

  • Kouraev A V, Papa F, Mognard N M, et al. 2004a. Sea ice cover in the Caspian and Aral Seas from historical and satellite data. Journal of Marine Systems, 47(1–4): 89–100

    Article  Google Scholar 

  • Kouraev A V, Papa F, Mognard N M, et al. 2004b. Synergy of active and passive satellite microwave data for the study of first-year sea ice in the Caspian and Aral seas. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2170–2176, doi: https://doi.org/10.1109/TGRS.2004.835307

    Article  Google Scholar 

  • Kouraev A V, Shimaraev M N, Buharizin P I, et al. 2008. Ice and snow cover of continental water bodies from simultaneous radar altimetry and radiometry observations. Surveys in Geophysics, 29(4): 271–295

    Article  Google Scholar 

  • Kouraev A V, Semovski S V, Shimaraev M N, et al. 2007. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sensing of Environment, 108(3): 240–253, doi: https://doi.org/10.1016/j.rse.2006.11.010

    Article  Google Scholar 

  • Laxon S. 1994. Sea ice altimeter processing scheme at the EODC. International Journal of Remote Sensing, 15(4): 915–924, doi: https://doi.org/10.1080/01431169408954124

    Article  Google Scholar 

  • Lomax A S, Lubin D, Whritner R H. 1995. The potential for interpreting total and multiyear ice concentrations in SSM/I 85.5 GHz imagery. Remote Sensing of Environment, 54(1): 13–26, doi: https://doi.org/10.1016/0034-4257(95)00082-C

    Article  Google Scholar 

  • Louet J, Bruzzi S. 1999. ENVISAT mission and system. In: IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg: IEEE, 1680–1682

    Google Scholar 

  • Markus T, Cavalieri D J. 2000. An enhancement of the NASA Team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1387–1398, doi: https://doi.org/10.1109/36.843033

    Article  Google Scholar 

  • Obligis E, Eymard L, Tran N, et al. 2006. First three years of the microwave radiometer aboard Envisat: in-flight calibration, processing, and validation of the geophysical products. Journal of Atmospheric and Oceanic Technology, 23(6): 802–814, doi: https://doi.org/10.1175/JTECH1878.1

    Article  Google Scholar 

  • Ochilov S, Clausi D A. 2012. Operational SAR sea-ice image classification. IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4397–4408, doi: https://doi.org/10.1109/TGRS.2012.2192278

    Article  Google Scholar 

  • Pol S L C, Ruf C S, Keihm S J. 1998. Improved 20- to 32-GHz atmospheric absorption model. Radio Science, 33(5): 1319–1333, doi: https://doi.org/10.1029/98RS01941

    Article  Google Scholar 

  • Przybylak R. 2007. Recent air-temperature changes in the Arctic. Annals of Glaciology, 46: 316–324, doi: https://doi.org/10.3189/172756407782871666

    Article  Google Scholar 

  • Remund Q P, Long D G. 1999. Sea ice extent mapping using Ku band scatterometer data. Journal of Geophysical Research: Oceans, 104(C5): 11515–11527, doi: https://doi.org/10.1029/98JC02373

    Article  Google Scholar 

  • Remund Q P, Long D G, Drinkwater M R. 2000. An iterative approach to multisensor sea ice classification. IEEE Transactions on Geoscience and Remote Sensing, 38(4): 1843–1856, doi: https://doi.org/10.1109/36.851768

    Article  Google Scholar 

  • Scheuchl B, Caves R, Cumming I, et al. 2001. Automated sea ice classification using spaceborne polarimetric SAR data. In: IEEE 2001 International Geoscience and Remote Sensing Symposium. Sydney: IEEE, 3117–3119

    Google Scholar 

  • Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337, doi: https://doi.org/10.1038/nature09051

    Article  Google Scholar 

  • Shokr M, Sinha N K. 2015. Sea Ice: Physics and Remote Sensing. Washington, DC: American Geophysical Union, 615

    Google Scholar 

  • Swan A M, Long D G. 2012. Multiyear Arctic sea ice classification using QuikSCAT. IEEE Transactions on Geoscience and Remote Sensing, 50(9): 3317–3326, doi: https://doi.org/10.1109/TGRS.2012.2184123

    Article  Google Scholar 

  • Tandon N F, Kushner P J, Docquier D, et al. 2018. Reassessing sea ice drift and its relationship to long-term Arctic sea ice loss in coupled climate models. Journal of Geophysical Research: Oceans, 123(6): 4338–4359, doi: https://doi.org/10.1029/2017JC013697

    Article  Google Scholar 

  • Woodhouse I H. 2017. Introduction to Microwave Remote Sensing. Boca Raton: CRC Press, 400

    Book  Google Scholar 

  • Xu Ke, Jiang Jingshan, Liu Heguang. 2007. A new tracker for oceanland compatible radar altimeter. In: 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 3825–3828

    Chapter  Google Scholar 

  • Xu Ke, Jiang Jingshan, Liu Heguang. 2013. HY-2A radar altimeter design and in flight preliminary results. In: 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne: IEEE, 1680–1683

    Chapter  Google Scholar 

  • Xu Ke, Liu Heguang, Liu Peng, et al. 2014. System techniques and capabilities of the HY-2A altimeter. In: 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC: IEEE, 5171–5174

    Google Scholar 

  • Xu Ke, Liu Peng, Tang Yueying, et al. 2017. The improved design for HY-2B radar altimeter. In: 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX: IEEE, 534–537

    Chapter  Google Scholar 

  • Zhang Dehai, Wang Zhenzhan, Li Yun, et al. 2015. Preliminary analysis of HY-2 ACMR data. In: 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan: IEEE, 177–180

    Chapter  Google Scholar 

  • Zhang Zhilun, Yu Yining, Li Xinqing, et al. 2019. Arctic sea ice classification using microwave scatterometer and radiometer data during 2002–2017. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5319–5328, doi: https://doi.org/10.1109/TGRS.2019.2898872

    Article  Google Scholar 

  • Zygmuntowska M, Khvorostovsky K, Helm V, et al. 2013. Waveform classification of airborne synthetic aperture radar altimeter over Arctic sea ice. The Cryosphere, 7(4): 1315–1324, doi: https://doi.org/10.5194/tc-7-1315-2013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsen Lin.

Additional information

Foundation item: The National Key Research and Development Program of China under contract Nos 2021YFC2803300, 2018YFC1407200, 2016YFC1401000 and 2018YFC1407203; the Impact and Response of Antarctic Seas to Climate Change, IRASCC2020-2022 under contract No. 01-01-03; the National Natural Science Foundation of China under contract Nos 41876204, 41941008, 41941013 and 41630969; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Lin, M., Cao, R. et al. Classification of ice and water in the Arctic using radar altimeter and microwave radiometer data from HY-2B satellite. Acta Oceanol. Sin. 42, 179–191 (2023). https://doi.org/10.1007/s13131-022-2067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-022-2067-4

Key words

Navigation