Skip to main content
Log in

Impacts of human activities on morphological evolution in the Modaomen Estuary, China

  • Articles
  • Marine Geology
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The morphology of the Modaomen Estuary (ME) has undergone drastic changes in recent decades, and quantifying the contribution of human activities and natural processes is crucial for estuary management. Using Landsat images, chart data, and hydrological and meteorological data, this study analyzed the evolution of the shoreline and subaqueous topography of the ME and attempted to quantify the extent of the contributions of human activities. The results show that local human activities dominated morphological evolution in some periods. From 1973 to 2003, the shoreline advanced rapidly seaward, resulting in approximately half of the water area being converted into land. Human activity is critical to this process, with the direct contribution of local land reclamation projects reaching more than 85%. After 2003, the shoreline remained relatively stable, probably due to a decrease in land reclamation projects. Regarding the evolution of subaqueous topography, the shoals in the estuary were heavily silted and gradually disappeared during 1983–2003, and the waterways narrowed and deepened. The average siltation rate decreased from 15.43 mm/a to −1.02 mm/a, indicating that the ME changed from sedimentation to slight erosion. By detecting variations of sediment load, we found that upstream human activities reduced river sediment, while downstream human activities significantly increased sediment input to the ME, leaving little change in the actual sediment input to the ME for a relatively long period. In addition, based on the empirical relationship between the sediment input and siltation rate, local human activities influenced the shift in the siltation state more than upstream and downstream human activities did. These findings suggest that more attention should be paid to local human activities to improve the estuarine management in the ME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Acciarri A, Bisci C, Cantalamessa G, et al. 2016. Anthropogenic influence on recent evolution of shorelines between the Conero Mt. and the Tronto R. mouth (southern Marche, Central Italy). CATENA, 147: 545–555, doi: https://doi.org/10.1016/j.catena.2016.08.018

    Article  Google Scholar 

  • Besset M, Anthony E J, Bouchette F. 2019. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: an assessment and review. Earth-Science Reviews, 193: 199–219, doi: https://doi.org/10.1016/j.earscirev.2019.04.018

    Article  Google Scholar 

  • Chen Xiaowen, Liu Xia, Zhang Wei. 2011. Shore reclamation in Zhujiang River Esturay and its impact analysis. Journal of Hohai University (Natural Sciences) (in Chinese), 39(1): 39–43

    Google Scholar 

  • Chu Zhongxin, Yang Xuhui, Feng Xiuli, et al. 2013. Temporal and spatial changes in coastline movement of the Yangtze Delta during 1974–2010. Journal of Asian Earth Sciences, 66: 166–174, doi: https://doi.org/10.1016/j.jseaes.2013.01.002

    Article  Google Scholar 

  • Cooper J A G, Pilkey O H. 2004. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change, 43(3–4): 157–171

    Article  Google Scholar 

  • Cowart L, Walsh J P, Corbett D R. 2010. Analyzing estuarine shoreline change: a case study of cedar Island, North Carolina. Journal of Coastal Research, 26(5): 817–830

    Article  Google Scholar 

  • Cui Buli, Li Xiaoyan. 2011. Coastline change of the Yellow River Estuary and its response to the sediment and runoff (1976–2005). Geomorphology, 127(1–2): 32–40

    Article  Google Scholar 

  • Cunliffe A M, Tanski G, Radosavljevic B, et al. 2019. Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. The Cryosphere, 13(5): 1513–1528, doi: https://doi.org/10.5194/tc-13-1513-2019

    Article  Google Scholar 

  • Dai Zhijun. 2021. Changjiang Riverine and Estuarine Hydro-morphodynamic Processes: in the Context of Anthropocene Era. Singapore: Springer

    Book  Google Scholar 

  • Dai Zhijun, Liu J T. 2013. Impacts of large dams on downstream fluvial sedimentation: an example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). Journal of Hydrology, 480: 10–18, doi: https://doi.org/10.1016/j.jhydrol.2012.12.003

    Article  Google Scholar 

  • Dai Zhijun, Liu J T, Wei Wen, et al. 2014. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta. Scientific Reports, 4: 6600, doi: https://doi.org/10.1038/srep06600

    Article  Google Scholar 

  • Dai Shibao, Lu Xixi. 2014. Sediment load change in the Yangtze River (Changjiang): a review. Geomorphology, 215: 60–73, doi: https://doi.org/10.1016/j.geomorph.2013.05.027

    Article  Google Scholar 

  • Dai Zhijun, Mei Xuefei, Darby S E, et al. 2018. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. Journal of Hydrology, 566: 719–734, doi: https://doi.org/10.1016/j.jhydrol.2018.09.019

    Article  Google Scholar 

  • Dai Shibao, Yang Shilun, Cai Aimin. 2008. Impacts of dams on the sediment flux of the Zhujiang River, southern China. CATENA, 76(1): 36–43, doi: https://doi.org/10.1016/j.catena.2008.08.004

    Article  Google Scholar 

  • Day J W, Giosan L. 2008. Survive or subside? Nature Geoscience, 1(3): 156–157

    Article  Google Scholar 

  • Dean R G, Houston J R. 2016. Determining shoreline response to sea level rise. Coastal Engineering, 114: 1–8, doi: https://doi.org/10.1016/j.coastaleng.2016.03.009

    Article  Google Scholar 

  • Fanos A M. 1995. The impact of human activities on the erosion and accretion of the Nile Delta coast. Journal of Coastal Research, 11(3): 821–833

    Google Scholar 

  • Fearnley S M, Miner M D, Kulp M, et al. 2009. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005. Geo-Marine Letters, 29(6): 455–466, doi: https://doi.org/10.1007/s00367-009-0155-5

    Article  Google Scholar 

  • Ford M. 2013. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sensing of Environment, 135: 130–140, doi: https://doi.org/10.1016/j.rse.2013.03.027

    Article  Google Scholar 

  • Frihy O E, Debes E A, El Sayed W R. 2003. Processes reshaping the Nile delta promontories of Egypt: pre- and post-protection. Geomorphology, 53(3–4): 263–279

    Article  Google Scholar 

  • Gellis A C, Noe G B. 2013. Sediment source analysis in the Linganore Creek watershed, Maryland, USA, using the sediment fingerprinting approach: 2008 to 2010. Journal of Soils and Sediments, 13(10): 1735–1753, doi: https://doi.org/10.1007/s11368-013-0771-6

    Article  Google Scholar 

  • Gong Wenping, Shen Jian. 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China. Continental Shelf Research, 31(7–8): 769–788

    Article  Google Scholar 

  • Grill G, Lehner B, Thieme M, et al. 2019. Mapping the world’s free-flowing rivers. Nature, 569(7755): 215–221, doi: https://doi.org/10.1038/s41586-019-1111-9

    Article  Google Scholar 

  • Han Zhiyuan, Tian Xiangping, Ou Suying. 2010. Impacts of Large-scale human activities on riverbed morphology and tidal dynamics at modaomen estuary. Scientia Geographica Sinica (in Chinese), 30(4): 582–587

    Google Scholar 

  • Hansen J E, Elias E, List J H, et al. 2013. Tidally influenced alongshore circulation at an inlet-adjacent shoreline. Continental Shelf Research, 56: 26–38, doi: https://doi.org/10.1016/j.csr.2013.01.017

    Article  Google Scholar 

  • Healy M G, Hickey K R. 2002. Historic land reclamation in the intertidal wetlands of the Shannon Estuary, western Ireland. Journal of Coastal Research, 36(10036): 365–373

    Article  Google Scholar 

  • Hillel D. 2013. Introduction to Soil Physics. New York: Academic Press

    Google Scholar 

  • Himmelstoss E A, Henderson R E, Kratzmann M G, et al. 2018. Digital shoreline analysis system (DSAS) version 5.0 user guide. Reston: U. S. Geological Survey

    Book  Google Scholar 

  • Jia Liangwen, Pan Shunqi, Wu Chaoyu. 2013. Effects of the anthropogenic activities on the morphological evolution of the Modaomen Estuary, Zhujiang River Delta, China. China Ocean Engineering, 27(6): 795–808, doi: https://doi.org/10.1007/s13344-013-0065-1

    Article  Google Scholar 

  • Jones B M, Grosse G, Arp C D, et al. 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 116(G2): G00M03

    Google Scholar 

  • Kong Dongxian, Miao Chiyuan, Borthwick A G L, et al. 2015. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. Journal of Hydrology, 520: 157–167, doi: https://doi.org/10.1016/j.jhydrol.2014.09.038

    Article  Google Scholar 

  • Lehner B, Liermann C R, Revenga C, et al. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9): 494–502, doi: https://doi.org/10.1890/100125

    Article  Google Scholar 

  • Liu Feng, Hu Shuai, Guo Xiaojuan, et al. 2018. Recent changes in the sediment regime of the Zhujiang River (South China): causes and implications for the Zhujiang River Delta. Hydrological Processes, 32(12): 1771–1785, doi: https://doi.org/10.1002/hyp.11513

    Article  Google Scholar 

  • Liu Feng, Tian Xiangping, Han Zhiyuan, et al. 2011. Analysis of river channel evolution of Modaomen channel of Xijiang River in past forty years. Journal of Sediment Research (in Chinese), (1): 45–50

  • Liu Feng, Yuan Lirong, Yang Qingshu, et al. 2014. Hydrological responses to the combined influence of diverse human activities in the Zhujiang River Delta, China. CATENA, 113: 41–55, doi: https://doi.org/10.1016/j.catena.2013.09.003

    Article  Google Scholar 

  • Loveland T R, Dwyer J L. 2012. Landsat: building a strong future. Remote Sensing of Environment, 122: 22–29, doi: https://doi.org/10.1016/j.rse.2011.09.022

    Article  Google Scholar 

  • Luo Xiangxin, Yang Shilun, Zhang Jing. 2012. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea. Geomorphology, 179: 126–140, doi: https://doi.org/10.1016/j.geomorph.2012.05.034

    Article  Google Scholar 

  • Luo Xianlin, Zeng E Y, Ji Rongyao, et al. 2007. Effects of in-channel sand excavation on the hydrology of the Zhujiang River Delta, China. Journal of Hydrology, 343(3–4): 230–239

    Article  Google Scholar 

  • Matin N, Hasan G M J. 2021. A quantitative analysis of shoreline changes along the coast of Bangladesh using remote sensing and GIS techniques. CATENA, 201: 105185, doi: https://doi.org/10.1016/j.catena.2021.105185

    Article  Google Scholar 

  • McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425–1432, doi: https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  • Meade R H. 1982. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90(3): 235–252, doi: https://doi.org/10.1086/628677

    Article  Google Scholar 

  • Mei Xuefei, Dai Zhijun, Du Jinzhou, et al. 2015. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake. Scientific Reports, 5: 18197, doi: https://doi.org/10.1038/srep18197

    Article  Google Scholar 

  • Nilsson C, Reidy C A, Dynesius M, et al. 2005. Fragmentation and flow regulation of the world’s large river systems. Science, 308(5720): 405–408, doi: https://doi.org/10.1126/science.1107887

    Article  Google Scholar 

  • Pritchard D W. 1967. What is an estuary: physical viewpoint. American Association for the Advancement of Science, 83: 3–5

    Google Scholar 

  • Roccati A, Faccini F, Luino F, et al. 2019. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. CATENA, 182: 104122, doi: https://doi.org/10.1016/j.catena.2019.104122

    Article  Google Scholar 

  • San-Nami T, Uda T, Onaka S. 2013. Long-term shoreline recession on eastern Bali Coast caused by riverbed mining. In: Proceedings of the 7th International Conference on Asian and Pacific Coasts. Bali: Hasanuddin University, 275–282

    Google Scholar 

  • Stanley D J, Warne A G. 1993. Nile delta: recent geological evolution and human impact. Science, 260(5108): 628–634, doi: https://doi.org/10.1126/science.260.5108.628

    Article  Google Scholar 

  • Thieler E R, Himmelstoss E A, Zichichi J L, et al. 2009. The digital shoreline analysis system (DSAS) version 4.0-An ArcGIS extension for calculating shoreline change. Reston: U. S. Geological Survey

    Book  Google Scholar 

  • van der Wal D, Pye K, Neal A. 2002. Long-term morphological change in the Ribble Estuary, northwest England. Marine Geology, 189(3–4): 249–266

    Article  Google Scholar 

  • Wang Jie, Dai Zhijun, Mei Xuefei, et al. 2020. Tropical cyclones significantly alleviate mega–deltaic erosion induced by high riverine flow. Geophysical Research Letters, 47(19): e2020GL089065

    Article  Google Scholar 

  • Wei Xing, Cai Shuqun, Zhan Weikang. 2021. Impact of anthropogenic activities on morphological and deposition flux changes in the Zhujiang River Estuary, China. Scientific Reports, 11(1): 16643, doi: https://doi.org/10.1038/s41598-021-96183-0

    Article  Google Scholar 

  • Wu Ziyin, Milliman J D, Zhao Dineng, et al. 2018. Geomorphologic changes in the lower Zhujiang River Delta, 1850–2015, largely due to human activity. Geomorphology, 314: 42–54, doi: https://doi.org/10.1016/j.geomorph.2018.05.001

    Article  Google Scholar 

  • Wu Ziyin, Saito Y, Zhao Dineng, et al. 2016a. Impact of human activities on subaqueous topographic change in Lingding Bay of the Zhujiang River Estuary, China, during 1955–2013. Scientific Reports, 6: 37742, doi: https://doi.org/10.1038/srep37742

    Article  Google Scholar 

  • Wu Chuangshou, Yang Shilun, Huang Shichang, et al. 2016b. Delta changes in the Zhujiang River Estuary and its response to human activities (1954–2008). Quaternary International, 392: 147–154, doi: https://doi.org/10.1016/j.quaint.2015.04.009

    Article  Google Scholar 

  • Yang Shilun, Belkin I M, Belkina A I, et al. 2003. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science, 57(4): 689–699

    Article  Google Scholar 

  • Yang Liuzhu, Liu Feng, Gong Wenping, et al. 2019. Morphological response of Lingding Bay in the Zhujiang River Estuary to human intervention in recent decades. Ocean & Coastal Management, 176: 1–10

    Article  Google Scholar 

  • Yang Shilun, Milliman J D, Li Peng, et al. 2011. 50, 000 dams later: erosion of the Yangtze River and its delta. Global and Planetary Change, 75(1–2): 14–20

    Article  Google Scholar 

  • Yang Zuosheng, Wang Houjie, Saito Y, et al. 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research, 42(4): W04407

    Article  Google Scholar 

  • Yang Shilun, Zhang Jianbo, Xu Xiaojun. 2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophysical Research Letters, 34(10): L10401, doi: https://doi.org/10.1029/2007GL029472

    Article  Google Scholar 

  • Zhang Shurong, Lu Xixi. 2009. Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. CATENA, 77(2): 130–142, doi: https://doi.org/10.1016/j.catena.2008.09.001

    Article  Google Scholar 

  • Zhang Qiang, Xu Chongyu, Chen Yongqin David, et al. 2009. Abrupt behaviors of the streamflow of the Zhujiang River basin and implications for hydrological alterations across the Zhujiang River Delta, China. Journal of Hydrology, 377(3–4): 274–283

    Article  Google Scholar 

  • Zhang Wei, Xu Yang, Hoitink A J F, et al. 2015. Morphological change in the Zhujiang River Delta, China. Marine Geology, 363: 202–219, doi: https://doi.org/10.1016/j.margeo.2015.02.012

    Article  Google Scholar 

  • Zhu Meisha, Sun Tao, Shao Dongdong. 2016. Impact of land reclamation on the evolution of shoreline change and nearshore vegetation distribution in Yangtze River Estuary. Wetlands, 36(S1): 11–17, doi: https://doi.org/10.1007/s13157-014-0610-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haigang Zhan.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 41876205, 42106169 and 41890851; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract Nos GML2019ZD0305 and GML2019ZD0303; the Project of State Key Laboratory of Tropical Oceanography under contract Nos LTOZZ2102 and LTOZZ2202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, T., Zhan, H., Wei, X. et al. Impacts of human activities on morphological evolution in the Modaomen Estuary, China. Acta Oceanol. Sin. 42, 79–92 (2023). https://doi.org/10.1007/s13131-022-2064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-022-2064-7

Key words

Navigation