Abstract
A thorough understanding of the biogeochemical cycling of trace metals in the ocean is crucial because of the important role these elements play in regulating metabolism in marine biotas and thus, the climate. However, a precise and accurate analysis of trace metals in seawater is difficult because they are present at extremely low concentrations in a high salt matrix. In this study, we report an analytical method for the preconcentration and separation of six trace metals, Fe, Ni, Cu, Zn, Cd and Pb, in seawater using a seaFAST automatic solid-phase extraction device, analysis by a triple quadrupole collision/reaction technique with inductively coupled plasma mass spectrometry (ICP-MS), and quantification by the isotope dilution technique. A small volume (10 mL) of seawater sample was mixed with a multi-element isotope spike and subjected to seaFAST procedures. The preconcentrate solution was then analyzed using the optimized collision/reaction cell mode of ICP-MS, with NH3 gas for Fe and Cd with a flow rate of 0.22 mL/min and He for Ni, Cu, Zn and Pb with a flow rate of 4.0 mL/min. The procedure blanks were 130 pmol/L, 3.0 pmol/L, 6.8 pmol/L, 37 pmol/L, 0.29 pmol/L and 0.42 pmol/L, for Fe, Ni, Cu, Zn, Cd and Pb, respectively. The method was validated using five reference materials (SLRs-6, SLEW-3, CASS-6, NASS-7 and GEOTRACE-GSC), and our results were consistent with the consensus values. The method was further validated by measuring full-water-column seawater samples from the subtropical Northwest Pacific Ocean, and our results demonstrated good oceanic consistency.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Almeida C, Vasconcelos M, Barbaste M, et al. 2002. ICP-MS multielement analysis of wine samples—a comparative study of the methodologies used in two laboratories. Analytical and Bioanalytical Chemistry, 374(2): 314–322, doi: https://doi.org/10.1007/s00216-002-1467-8
AlSuhaimi A O, AlRadaddi S M, Ali A K A S, et al. 2019. Silica-based chelating resin bearing dual 8-Hydroxyquinoline moieties and its applications for solid phase extraction of trace metals from seawater prior to their analysis by ICP-MS. Arabian Journal of Chemistry, 12(3): 360–369, doi: https://doi.org/10.1016/j.arabjc.2017.10.006
An B, Can S Z, Bakırdere S. 2020. Traceable and accurate quantification of iron in seawater using isotope dilution calibration strategies by triple quadrupole ICP-MS/MS: characterization measurements of iron in a candidate seawater CRM. Talanta, 209: 120503, doi: https://doi.org/10.1016/j.talanta.2019.120503
Behrens M K, Muratli J, Pradoux C, et al. 2016. Rapid and precise analysis of rare earth elements in small volumes of seawater—Method and intercomparison. Marine Chemistry, 186: 110–120, doi: https://doi.org/10.1016/j.marchem.2016.08.006
Bianchi F, Careri M, Maffini M, et al. 2003. Use of experimental design for optimisation of the cold plasma ICP-MS determination of lithium, aluminum and iron in soft drinks and alcoholic beverages. Rapid Communications in Mass Spectrometry, 17(3): 251–256, doi: https://doi.org/10.1002/rcm.907
Biller D V, Bruland K W. 2012. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Marine Chemistry, 130–131: 12–20
Boyle E A, Bergquist B A, Kayser R A, et al. 2005. Iron, manganese, and lead at Hawaii Ocean Time-series Station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochimica et Cosmochimica Acta, 69(4): 933–952, doi: https://doi.org/10.1016/j.gca.2004.07.034
de Jong J, Schoemann V, Lannuzel D, et al. 2008. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation. Analytica Chimica Acta, 623(2): 126–139, doi: https://doi.org/10.1016/j.aca.2008.06.013
Evans E H, Clough R. 2005. Isotope dilution analysis. In: Worsfold P, Townshend A, eds. Encyclopedia of Analytical Science. 2nd ed. Amsterdam: Elsevier, 545–553
Firdaus M L, Norisuye K, Sato T, et al. 2007. Preconcentration of Zr, Hf, Nb, Ta and W in seawater using solid-phase extraction on TSK-8-hydroxyquinoline resin and determination by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 583(2): 296–302, doi: https://doi.org/10.1016/j.aca.2006.10.033
Freslon N, Bayon G, Birot D, et al. 2011. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation. Talanta, 85(1): 582–587, doi: https://doi.org/10.1016/j.talanta.2011.04.023
He Man, Huang Lijin, Zhao Bingshan, et al. 2017. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species—A review. Analytica Chimica Acta, 973: 1–24, doi: https://doi.org/10.1016/j.aca.2017.03.047
Hwang T J, Jiang S J. 1997. Determination of trace amounts of zinc in water samples by flow injection isotope dilution inductively coupled plasma mass spectrometry. Analyst, 122(3): 233–237, doi: https://doi.org/10.1039/a606577e
Jackson S L, Spence J, Janssen D J, et al. 2018. Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 33(2): 304–313, doi: https://doi.org/10.1039/C7JA00237H
Janssen D J, Sieber M, Ellwood M J, et al. 2020. Trace metal and nutrient dynamics across broad biogeochemical gradients in the Indian and Pacific sectors of the Southern Ocean. Marine Chemistry, 221: 103773, doi: https://doi.org/10.1016/j.marchem.2020.103773
Jensen L T, Wyatt N J, Twining B S, et al. 2019. Biogeochemical cycling of dissolved zinc in the western Arctic (Arctic GEOTRACES GN01). Global Biogeochemical Cycles, 33(3): 343–369, doi: https://doi.org/10.1029/2018GB005975
Jiang Shuo, Zhang Jing, Zhang Ruifeng, et al. 2018. Dissolved lead in the East China Sea with implications for impacts of marginal seas on the open ocean through cross-shelf exchange. Journal of Geophysical Research, 123(8): 6004–6018, doi: https://doi.org/10.1029/2018JC013955
Jiang Shuo, Zhang Jing, Zhou Hui, et al. 2021. Concentration of dissolved lead in the upper northwestern Pacific Ocean. Chemical Geology, 577: 120275, doi: https://doi.org/10.1016/j.chemgeo.2021.120275
Kato T, Nakamura S, Morita M. 1990. Determination of nickel, copper, zinc, silver, cadmium and lead in seawater by isotope dilution inductively coupled plasma mass spectrometry. Analytical Sciences, 6(4): 623–626, doi: https://doi.org/10.2116/analsci.6.623
Komjarova I, Blust R. 2006. Comparison of liquid-liquid extraction, solid-phase extraction and co-precipitation preconcentration methods for the determination of cadmium, copper, nickel, lead and zinc in seawater. Analytica Chimica Acta, 576(2): 221–228, doi: https://doi.org/10.1016/j.aca.2006.06.002
Kuma K, Isoda Y, Nakabayashi S. 2003. Control on dissolved iron concentrations in deep waters in the western North Pacific: Iron(III) hydroxide solubility. Journal of Geophysical Research, 108(C9): 3289, doi: https://doi.org/10.1029/2002JC001481
Lee J M, Boyle E A, Echegoyen-Sanz Y, et al. 2011. Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 686(1–2): 93–101, doi: https://doi.org/10.1016/j.aca.2010.11.052
Li Li, Wang Xiaojing, Liu Jihua, et al. 2017. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China. Journal of Geophysical Research, 122(2): 1190–1205, doi: https://doi.org/10.1002/2016JC012500
Liao Wen-Hsuan, Takano S, Yang Shun-Chung, et al. 2020. Zn isotope composition in the water column of the northwestern Pacific Ocean: the importance of external sources. Global Biogeochemical Cycles, 34(1): e2019GB006379
Mackey D J, O’Sullivan J E, Watson R J, et al. 2002. Trace metals in the western Pacific: temporal and spatial variability in the concentrations of Cd, Cu, Mn and Ni. Deep-Sea Research Part I: Oceanographic Research Papers, 49(12): 2241–2259, doi: https://doi.org/10.1016/S0967-0637(02)00124-3
Masson P, Vives A, Orignac D, et al. 2000. Influence of aerosol desolvation from the ultrasonic nebulizer on the matrix effect in axial view inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 15(5): 543–547, doi: https://doi.org/10.1039/a909651e
Nishioka J, Obata H. 2017. Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes. Limnology and Oceanography, 62(5): 2004–2022, doi: https://doi.org/10.1002/lno.10548
Norisuye K, Ezoe M, Nakatsuka S, et al. 2007. Distribution of bioactive trace metals (Fe, Co, Ni, Cu, Zn and Cd) in the Sulu Sea and its adjacent seas. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(1–2): 14–37, doi: https://doi.org/10.1016/j.dsr2.2006.04.019
Pickhardt C, Izmer A V, Zoriy M V, et al. 2006. On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber. International Journal of Mass Spectrometry, 248(3): 136–141, doi: https://doi.org/10.1016/j.ijms.2005.11.001
Rapp I, Schlosser C, Rusiecka D, et al. 2017. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Analytica Chimica Acta, 976: 1–13, doi: https://doi.org/10.1016/j.aca.2017.05.008
Rimskaya-Korsakova M N, Berezhnaya E D, Dubinin A V. 2017. Analysis of molybdenum, tungsten, and vanadium in surface water of the Atlantic Ocean using solid phase extraction with 8-hydroxyquinoline and ICP MS determination. Oceanology, 57(4): 530–538, doi: https://doi.org/10.1134/S0001437017040154
Rottmann L, Heumann K G. 1994. Development of an on-line isotope dilution technique with HPLC/ICP-MS for the accurate determination of elemental species. Fresenius’ Journal of Analytical Chemistry, 350(4): 221–227
Sohrin Y, Urushihara S, Nakatsuka S, et al. 2008. Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Analytical Chemistry, 80(16): 6267–6273, doi: https://doi.org/10.1021/ac800500f
Song Panshu, Wang Jun, Chao Jingbo, et al. 2019. Accurate determination of trace molybdenum in drinking water by isotope dilution inductively coupled plasma mass spectrometry. Analytical Sciences, 35(7): 807–809, doi: https://doi.org/10.2116/analsci.19N010
Sunda W G. 2012. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in Microbiology, 3: 304
Trueman C N, Rodgers K J, McLellan I S, et al. 2019. Geochemistry ∣ Inorganic. In: Worsfold P, Poole C F, Townshend A, et al., eds. Encyclopedia of Analytical Science. 3rd ed. Cambridge: Elsevier, 271–282
Vassileva E, Wysocka I, Orani A M, et al. 2019. “Off-line preconcentration and inductively coupled plasma sector field mass spectrometry simultaneous determination of Cd, Co, Cu, Mn, Ni, Pb and Zn mass fractions in seawater: procedure validation. Spectrochimica Acta Part B: Atomic Spectroscopy, 153: 19–27, doi: https://doi.org/10.1016/j.sab.2019.01.001
Vegueria S F J, Godoy J M, de Campos R C, et al. 2013. Trace element determination in seawater by ICP-MS using online, offline and bath procedures of preconcentration and matrix elimination. Microchemical Journal, 106: 121–128, doi: https://doi.org/10.1016/j.microc.2012.05.032
Warnken K W, Tang Degui, Gill G A, et al. 2000. Performance optimization of a commercially available iminodiacetate resin for the determination of Mn, Ni, Cu, Cd and Pb by on-line preconcentration inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 423(2): 265–276, doi: https://doi.org/10.1016/S0003-2670(00)01137-5
Wu Jingfeng. 2007. Determination of picomolar iron in seawater by double Mg(OH)2 precipitation isotope dilution high-resolution ICPMS. Marine Chemistry, 103(3–4): 370–381, doi: https://doi.org/10.1016/j.marchem.2006.10.006
Wu Jingfeng, Rember R, Jin Meibin, et al. 2010. Isotopic evidence for the source of lead in the North Pacific abyssal water. Geochimica et Cosmochimica Acta, 74(16): 4629–4638, doi: https://doi.org/10.1016/j.gca.2010.05.017
Wuttig K, Townsend A T, van der Merwe P, et al. 2019. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 197: 653–668, doi: https://doi.org/10.1016/j.talanta.2019.01.047
Yamada N. 2015. Kinetic energy discrimination in collision/reaction cell ICP-MS: theoretical review of principles and limitations. Spectrochimica Acta Part B: Atomic Spectroscopy, 110: 31–44, doi: https://doi.org/10.1016/j.sab.2015.05.008
Zhang Ruifeng, Jensen L T, Fitzsimmons J N, et al. 2019a. Dissolved cadmium and cadmium stable isotopes in the western Arctic Ocean. Geochimica et Cosmochimica Acta, 258: 258–273, doi: https://doi.org/10.1016/j.gca.2019.05.028
Zhang Ruifeng, Zhu Xunchi, Yang Chenghao, et al. 2019b. Distribution of dissolved iron in the Pearl River (Zhujiang) Estuary and the northern continental slope of the South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 167: 14–24, doi: https://doi.org/10.1016/j.dsr2.2018.12.006
Zheng Linjie, Minami T, Konagaya W, et al. 2019. Distinct basin-scale-distributions of aluminum, manganese, cobalt, and lead in the North Pacific Ocean. Geochimica et Cosmochimica Acta, 254: 102–121, doi: https://doi.org/10.1016/j.gca.2019.03.038
Zheng Linjie, Minami T, Takano S, et al. 2021. Sectional distribution patterns of Cd, Ni, Zn, and Cu in the North Pacific Ocean: relationships to nutrients and importance of scavenging. Global Biogeochemical Cycles, 35(7): e2020GB006558
Acknowledgements
We would like to thank ThermoFisher Scientific Corp. for their generosity in providing us with the ICAP TQ ICP-MS for conducting this study. This work was also supported by the Shanghai Frontiers Science Center of Polar Science.
Author information
Authors and Affiliations
Corresponding author
Additional information
Foundation item: The National Natural Science Foundation of China under contract Nos 41921006, 41890801 and 42076227; the Impact and Response of Antarctic Seas to Climate Change, Grant 583 under contract No. IRASCC 1-02-01B.
Rights and permissions
About this article
Cite this article
Ge, Y., Zhang, R., Jiang, Z. et al. Determination of Fe, Ni, Cu, Zn, Cd and Pb in seawater by isotope dilution automatic solid-phase extraction—ICP-MS. Acta Oceanol. Sin. 41, 129–136 (2022). https://doi.org/10.1007/s13131-022-2016-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13131-022-2016-2