Skip to main content

Advertisement

Log in

Ophiuroid fauna of cobalt-rich crust seamounts in the Northwest Pacific Ocean

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Seamounts are vulnerable ecosystems in the deep sea and can be heavily impacted by human activities, such as bottom fishing and deep-sea mining. The species composition and distribution patterns of benthic fauna is key information for the designation of marine protected areas and environmental management plans. Three contracts for cobalt-rich crust exploration have been granted to China, Japan and Korea in the Northwest Pacific Ocean by the International Seabed Authority. However, our knowledge of benthic biodiversity in this area is extremely insufficient. During 2013–2020, eight Chinese Ocean Mineral Resources R&D Association (COMRA) cruises were conducted to investigate the benthic assemblages of nine seamounts in this region. In this study, 191 ophiuroids collected from seamounts in the Northwest Pacific were identified into 29 species in 11 families. Ophiacanthidae and Euryalidae were the two most dominant families with 12 and 6 species, respectively. Ophiotomidae and Ophiopyrgidae were represented by two species each, while seven families were represented by only one species. Four species were widely distributed among 4–5 seamounts, and 17 species were found only at a single site. An integrated regional taxonomic dataset of Ophiuroidea was generated and analyzed. A total of 23 and 14 species were obtained from the Magellan Seamount Chain (MSC) and the Marcus-Wake seamounts (MWS), respectively, with 8 species shared between the two seamount groups. The individual-based rarefaction curves did not reach an asymptote, suggesting that the sampling effort was inadequate for either the entire region or each single seamount. Most species distributed in a narrow depth range, and the species composition was different between water depths above and below 2 000 m. Our results greatly improve the understanding of megafaunal biodiversity from seamounts in the Northwest Pacific Ocean, and highlight the necessity of further surveys to provide more robust information for environmental protection and management in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althaus F, Williams A, Schlacher T A, et al. 2009. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Marine Ecology Progress Series, 397: 279–294, doi: https://doi.org/10.3354/meps08248

    Article  Google Scholar 

  • Andrews A H, Stone R P, Lundstrom C C, et al. 2009. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating. Marine Ecology Progress Series, 397: 173–185, doi: https://doi.org/10.3354/meps08193

    Article  Google Scholar 

  • Atkinson L J, Field J G, Hutchings L. 2011. Effects of demersal trawling along the west coast of southern Africa: multivariate analysis of benthic assemblages. Marine Ecology Progress Series, 430: 241–255, doi: https://doi.org/10.3354/meps08956

    Article  Google Scholar 

  • Baker A N. 1980. Euryalinid Ophiuroidea (Echinodermata) from Australia, New Zealand, and the south-west Pacific Ocean. New Zealand Journal of Zoology, 7(1): 11–83, doi: https://doi.org/10.1080/03014223.1980.10423763

    Article  Google Scholar 

  • Buesseler K O, Boyd P W, Black E E, et al. 2020. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, 117(18): 9679–9687, doi: https://doi.org/10.1073/pnas.1918114117

    Article  Google Scholar 

  • Carreiro-Silva M, Andrews A H, Braga-Henriques A, et al. 2013. Variability in growth rates of long-lived black coral leiopathes sp. from the Azores. Marine Ecology Progress Series, 473: 189–199, doi: https://doi.org/10.3354/meps10052

    Article  Google Scholar 

  • Chen Wanying, Na Jieying, Zhang Dongsheng. 2021. Description of three species of ophioplinthacids, including a new species, from a deep seamount in the Northwest Pacific Ocean. PeerJ, 9: e11566, doi: https://doi.org/10.7717/peerj.11566

    Article  Google Scholar 

  • Cherbonnier G, Sibuet M. 1972. Resultats Scientifique de la compagne Noratlante: Asterides et Ophiures. Bulletin du Museum National d’Histoire Naturell Paris 3e serie Zoologie, 102(76): 1333–1394

    Google Scholar 

  • Cho W, Shank T M. 2010. Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Marine Ecology, 31: 121–143, doi: https://doi.org/10.1111/j.1439-0485.2010.00395.x

    Article  Google Scholar 

  • Cho W W. 2008. Faunal biogeography community structure and genetic connectivity of North Atlantic seamounts [dissertation]. Cambridge: Woods Hole Oceanographic Institution

    Book  Google Scholar 

  • Christodoulou M, O’Hara T D, Hugall A F, et al. 2019. Dark ophiuroid biodiversity in a prospective abyssal mine field. Current Biology, 29(22): 3909–3912.e3, doi: https://doi.org/10.1016/j.cub.2019.09.012

    Article  Google Scholar 

  • Christodoulou M, O’Hara T D, Hugall A F, et al. 2020. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the Northeast Pacific Ocean and implications for conservation. Biogeosciences, 17(7): 1845–1876, doi: https://doi.org/10.5194/bg-17-1845-2020

    Article  Google Scholar 

  • Clark A H. 1949. Ophiuroidea of the Hawaiian Islands. Bulletin of the Bernice P. Bishop Museum, 195: 3–133

    Google Scholar 

  • Clark M R, Rowden A A, Schlacher T, et al. 2010. The ecology of seamounts: structure, function, and human impacts. Annual Review of Marine Science, 2: 253–278, doi: https://doi.org/10.1146/annurev-marine-120308-081109

    Article  Google Scholar 

  • Clark M R, Schlacher T A, Rowden A A, et al. 2012. Science priorities for seamounts: research links to conservation and management. PLoS One, 7(1): e29232, doi: https://doi.org/10.1371/journal.pone.0029232

    Article  Google Scholar 

  • Clark M R, Bowden D A. 2015. Seamount biodiversity: high variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia, 761(1): 161–180, doi: https://doi.org/10.1007/s10750-015-2327-9

    Article  Google Scholar 

  • Clark M R, Althaus F, Schlacher T A, et al. 2016. The impacts of deep-sea fisheries on benthic communities: a review. ICES Journal of Marine Science, 73(S1): i51–i69

    Article  Google Scholar 

  • De Forges B R, Koslow J A, Poore G C B. 2000. Diversity and endemism of the benthic seamount fauna in the Southwest Pacific. Nature, 405(6789): 944–947, doi: https://doi.org/10.1038/35016066

    Article  Google Scholar 

  • Dong Dong, Li Xinzheng, Lu Bo, et al. 2017. Three squat lobsters (Crustacea: Decapoda: Anomura) from tropical West Pacific seamounts, with description of a new species of Uroptychus Henderson, 1888. Zootaxa, 4311(3): 389–398, doi: https://doi.org/10.11646/zootaxa.4311.3.4

    Article  Google Scholar 

  • Forbes E. 1843. XVIII. On the radiata of the eastern Mediterranean. Part I., Ophiuridæ. Transactions of the Linnean Society of London, 19(2): 143–153, doi: https://doi.org/10.1111/j.1096-3642.1842.tb00360.x

    Article  Google Scholar 

  • Fujita T, Ohta S. 1988. Photographic observations of the life style of a deep-sea ophiuroid Asteronyx loveni (Echinodermata). Deep Sea Research Part A. Oceanographic Research Papers, 35(12): 2029–2043

    Article  Google Scholar 

  • Girard F, Fu B, Fisher C R. 2016. Mutualistic symbiosis with ophiuroids limited the impact of the Deepwater Horizon oil spill on deep-sea octocorals. Marine Ecology Progress Series, 549: 89–98, doi: https://doi.org/10.3354/meps11697

    Article  Google Scholar 

  • Grange K R. 1991. Mutualism between the antipatharian Antipathes fiordensis and the ophiuroid Astrobrachion constrictum in New Zealand fjords. Hydrobiologia, 216(1): 297–303

    Article  Google Scholar 

  • Gray J E. 1840. Synopsis of the contents of the British Museum. 42nd ed. London: Woodfall, 57–65

    Google Scholar 

  • Hertz M. 1927. Die Ophiuroiden der Deutschen Südpolar-Expedition. Deutsche Südpolar-Expedition 1901–1903. Berlin: Walter De Gryter Inc, 1–54

    Google Scholar 

  • Hunter R L, Halanych K M. 2008. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. Journal of Heredity, 99(2): 137–148, doi: https://doi.org/10.1093/jhered/esm119

    Article  Google Scholar 

  • Koehler R. 1904. Ophiures de l’expédition du Siboga, Part 1. Ophiures de mer profonde. In: Siboga Expeditie. Leiden: Boekhandel en Drukkerij voorheen Brill E J, 1–176

    Google Scholar 

  • Koehler R. 1922. Ophiurans of the Philippine Seas and adjacent waters. Smithsonian Institution, (5): 1–486

  • Koehler R. 1930. Ophiures recueillies par le Docteur Th. Mortensen dans les Mers d’Australie et dans l’Archipel Malais. Papers from Dr. Th. Mortensen’s Pacific Expedition 1914–16. LIV. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening, 89: 1–295

    Google Scholar 

  • Koslow J A, Gowlett-Holmes K, Lowry J K, et al. 2001. Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Marine Ecology Progress Series, 213: 111–125, doi: https://doi.org/10.3354/meps213111

    Article  Google Scholar 

  • Lütken C F. 1856. Bidrag til kundskab om Slangestjernerne: II. Oversigt over de vestindiske Ophiurer. Videnskabelige Meddelelser fra Dansk Naturhistorisk Förening i Kjøbenhavn 1856, 8: 1–19

    Google Scholar 

  • Lütken C F, Mortensen T. 1899. Reports on an exploration off the west coasts of Mexico, Central and Southern America and off the Galapagos Islands. Vol XXV. The Ophiuridae. Cambridge, USA: Marshall McDonald and Georgr M Bowers, 97–208

    Google Scholar 

  • Lamarck J B. 1981. Histoire Naturelle des Animaux Sans Vertèbres: Vol 1. New York, USA: Cambridge University Press, 568

    Google Scholar 

  • Levin L A, Ziebis W, Mendoza G F, et al. 2003. Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Marine Ecology Progress Series, 265: 123–139, doi: https://doi.org/10.3354/meps265123

    Article  Google Scholar 

  • Litvinova N M. 1981. Brittle-stars (Ophiuroidea). Moscow: Institute of Oceanology P P Shirshov oh the Russian Academy of Science, 113–131

    Google Scholar 

  • Ljungman A V. 1867. Ophiuroidea viventia huc usque cognita. Ö fversigt af Kungliga Vetenskaps-Akademiens Fö rhandlingar, 1866, 23: 303–336

    Google Scholar 

  • Lyman T. 1869. Preliminary report on the Ophiuridae and Astrophytidae dredged in deep water between Cuba and Florida Reef. Bulletin of the Museum of Comparative Zoology at Harvard College, 1: 309–354

    Google Scholar 

  • Lyman T. 1878. Ophiuridae and Astrophytidae of the Challenger expedition. In: Bulletin of the Museum of Comparative Zoology at Harvard College, Vol V. Cambridge, Mass, USA: Kraus Reprint Corporation, 65–108

    Google Scholar 

  • Lyman T. 1879. Ophiuridae and Astrophytidae of the exploring voyage of H. M. S. ‘Challenger’ under Prof. Sir Wyville Thomson, F. R. S. Part II. Bulletin of the Museum of Comparative Zoology at Harvard College, 6: 17–83

    Google Scholar 

  • Müller J P, Troschel F H. 1842. System der Asteriden. Braunschweig: Friedrich Vieweg und Sohn, 134

    Book  Google Scholar 

  • Mangano M C, Kaiser M J, Porporato E M D, et al. 2013. Effects of trawling impacts on mega-epibenthic communities from heavy exploited to undisturbed areas in a Mediterranean fishing ground (Central Mediterranean Sea). In: Proceeding of ICES Annual Science Conference 2013. Reykjavik: ICES

    Google Scholar 

  • Martynov A. 2010. Reassessment of the classification of the Ophiuroidea (Echinodermata), based on morphological characters. I. General character evaluation and delineation of the families Ophiomyxidae and Ophiacanthidae. Zootaxa, 2697: 1–154

    Article  Google Scholar 

  • Matsumoto H. 1915. A new classification of the Ophiuroidea: with descriptions of new genera and species. Proceedings of the Academy of Natural Sciences of Philadelphia, 67: 43–92

    Google Scholar 

  • McClain C R, Lundsten L, Barry J, et al. 2010. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Marine Ecology, 31: 14–25, doi: https://doi.org/10.1111/j.1439-0485.2010.00367.x

    Article  Google Scholar 

  • McKnight D G. 2003. New brittle-stars (Echinodermata: Ophiuroidea) from New Zealand waters. Zootaxa, 352(1): 1–36, doi: https://doi.org/10.11646/zootaxa.352.1.1

    Article  Google Scholar 

  • Menegotto A, Rangel T F. 2018. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nature Communications, 9: 4713, doi: https://doi.org/10.1038/s41467-018-07217-7

    Article  Google Scholar 

  • Morgan N B, Cairns S, Reiswig H, et al. 2015. Benthic megafaunal community structure of cobalt-rich manganese crusts on Necker Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 104: 92–105, doi: https://doi.org/10.1016/j.dsr.2015.07.003

    Article  Google Scholar 

  • Mosher C V, Watling L. 2009. Partners for life: a brittle star and its octocoral host. Marine Ecology Progress Series, 397: 81–88, doi: https://doi.org/10.3354/meps08113

    Article  Google Scholar 

  • Na Jieying, Chen Wanying, Zhang Dongsheng, et al. 2021. Morphological description and population structure of a ophiuroid species from cobalt-rich crust seamounts in the northwest Pacific: implications for marine protection under deep-sea mining. Acta Oceanological Sinica, 40(8):1–11, doi: https://doi.org/10.1007/s13131-020-1666-1

    Google Scholar 

  • O’Hara T D, Stöhr S. 2006. Deep water ophiuroidea (Echinodermata) of new Caledonia: ophiacanthidae and hemieuryalidae. In: De Forges R B, ed. Tropical Deep-Sea Benthos 24. Mémoires du Muséum National d’Histoire Naturelle. Paris: Publications Scientifiques du Muséum, 193: 33–141

    Google Scholar 

  • O’Hara T D. 2007. Seamounts: centres of endemism or species richness for ophiuroids?. Global Ecology and Biogeography, 16(6): 720–732

    Article  Google Scholar 

  • O’Hara T D, Rowden A A, Williams A. 2008. Cold-water coral habitats on seamounts: do they have a specialist fauna?. Diversity and Distributions, 14(6): 925–934, doi: https://doi.org/10.1111/j.1472-4642.2008.00495.x

    Article  Google Scholar 

  • O’Hara T D, Tittensor D P. 2010. Environmental drivers of ophiuroid species richness on seamounts. Marine Ecology, 31(S1): 26–38

    Article  Google Scholar 

  • O’Hara T D, England P R, Gunasekera R M, et al. 2014. Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep-Sea Research Part I: Oceanographic Research Papers, 84: 18–28, doi: https://doi.org/10.1016/j.dsr.2013.09.009

    Article  Google Scholar 

  • O’Hara T D, Hugall A F, Thuy B, et al. 2017. Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 107: 415–430, doi: https://doi.org/10.1016/j.ympev.2016.12.006

    Article  Google Scholar 

  • O’Hara T D, Stöhr S, Hugall A F, et al. 2018. Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy, 416: 1–35

    Google Scholar 

  • O’Hara T D, Hugall A F, Woolley S N C, et al. 2019. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature, 565(7741): 636–639, doi: https://doi.org/10.1038/s41586-019-0886-z

    Article  Google Scholar 

  • O’Hara T D, Rowden A A, Bax N J. 2011. A southern hemisphere bathyal fauna is distributed in latitudinal bands. Current Biology, 21(3): 226–230, doi: https://doi.org/10.1016/j.cub.2011.01.002

    Article  Google Scholar 

  • Okanishi M, Fujita T. 2013. Molecular phylogeny based on increased number of species and genes revealed more robust family-level systematics of the order Euryalida (Echinodermata: Ophiuroidea). Molecular Phylogenetics and Evolution, 69(3): 566–580, doi: https://doi.org/10.1016/j.ympev.2013.07.021

    Article  Google Scholar 

  • Okanishi M, O’Hara T D, Fujita T. 2011. Molecular phylogeny of the order Euryalida (Echinodermata: Ophiuroidea), based on mitochondrial and nuclear ribosomal genes. Molecular Phylogenetics and Evolution, 61(2): 392–399

    Article  Google Scholar 

  • Ordines F, Ramírez-Amaro S, Fernandez-Arcaya U, et al. 2019. First occurrence of an Ophiohelidae species in the Mediterranean: the high abundances of Ophiomyces grandis from the Mallorca Channel seamounts. Journal of the Marine Biological Association of the United Kingdom, 99(8): 1817–1823, doi: https://doi.org/10.1017/S0025315419000808

    Article  Google Scholar 

  • Pasternak F A. 1981. Alcyonacea and Gorgonacea. In: Kuznetsov A P, Mironov A N, eds. Benthos of the Submarine Mountains Marcus-Necker and Adjacent Pacific Regions. Moscow: Akademiya Nauk, 40–55

    Google Scholar 

  • Paterson G L J. 1985. The deep-sea Ophiuroidea of the North Atlantic Ocean. The Bulletin of the British Museum (Natural History), 49: 1–162, doi: https://doi.org/10.5962/bhl.part.6511

    Google Scholar 

  • Perrier E. 1893. Echinodermes. Traité de Zoologie, Ophiures. Paris: Smithsonian Libraries, 781–864

    Google Scholar 

  • Roark E B, Guilderson T P, Dunbar R B, et al. 2009. Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences of the United States of America, 106(13): 5204–5208, doi: https://doi.org/10.1073/pnas.0810875106

    Article  Google Scholar 

  • Salinas H F O, Alder V A, Puig A, et al. 2015. Latitudinal diversity patterns of diatoms in the Southwestern Atlantic and Antarctic waters. Journal of Plankton Research, 37(4): 659–665, doi: https://doi.org/10.1093/plankt/fbv042

    Article  Google Scholar 

  • Samadi S, Bottan L, Macpherson E, et al. 2006. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates. Marine Biology, 149(6): 1463–1475, doi: https://doi.org/10.1007/s00227-006-0306-4

    Article  Google Scholar 

  • Samedi S, Schlacher T A, Richer de Forges B. 2007. Seamount benthos. In: Pitcher T J, Morato T, Hart P J B, et al. eds. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell Scientific, 119–140

    Google Scholar 

  • Schlacher T A, Baco A R, Rowden A A, et al. 2014. Seamount benthos in a cobalt-rich crust region of the central Pacific: conservation challenges for future seabed mining. Diversity and distributions, 20(5): 491–502, doi: https://doi.org/10.1111/ddi.12142

    Article  Google Scholar 

  • Shank T M. 2010. Seamounts: deep-ocean laboratories of fauna connectivity, evolution, and endemism. Oceanography, 23(1): 108–122, doi: https://doi.org/10.5670/oceanog.2010.65

    Article  Google Scholar 

  • Shen Chengcheng, Zhang Dongsheng, Lu Bo, et al. 2020. A new species of glass sponge (Hexactinellida: Sceptrulophora: Uncinateridae) from the Weijia Seamount in the northwestern Pacific Ocean. Zootaxa, 4878(2): 322–334, doi: https://doi.org/10.11646/zootaxa.4878.2.6

    Article  Google Scholar 

  • Siqueira A C, Oliveira-Santos L G R, Cowman P F, et al. 2016. Evolutionary processes underlying latitudinal differences in reef fish biodiversity. Global Ecology and Biogeography, 25(12): 1466–1476, doi: https://doi.org/10.1111/geb.12506

    Article  Google Scholar 

  • Sponer R, Roy M S. 2002. Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution, 56(10): 1954–1967, doi: https://doi.org/10.1111/j.0014-3820.2002.tb00121.x

    Google Scholar 

  • Stöhr S, Weber A A T, Boissin E, et al. 2020. Resolving the Ophioderma longicauda (Echinodermata: Ophiuroidea) cryptic species complex: five sisters, three of them new. European Journal of Taxonomy, 607: 1–2

    Google Scholar 

  • Stöhr S, O’Hara T D, Thuy B. 2012. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One, 7(3): e31940, doi: https://doi.org/10.1371/journal.pone.0031940

    Article  Google Scholar 

  • Sun Dong, Wang Chunsheng. 2017. Latitudinal distribution of zooplankton communities in the Western Pacific along 160°E during summer 2014. Journal of Marine Systems, 169: 52–60, doi: https://doi.org/10.1016/j.jmarsys.2017.01.011

    Article  Google Scholar 

  • Thompson A, Sanders J, Tandstad M, et al. 2017. Vulnerable marine ecosystems: processes and practices in the high seas. Rome, Italy: Fisheries and Aquaculture Technical Paper (FAO)

    Google Scholar 

  • Thuy B, Stöhr S. 2011. Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): New perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013(1): 1–47, doi: https://doi.org/10.11646/zootaxa.3013.1.1

    Article  Google Scholar 

  • Thuy B, Stöhr S. 2016. A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PLoS One, 11(5): e0156140, doi: https://doi.org/10.1371/journal.pone.0156140

    Article  Google Scholar 

  • Verrill A E. 1884. Notice of the remarkable marine fauna occupying the outer banks off the southern coast of New England; No. 9, Brief contributions to zoology from the Museum of Yale College; No. LV. American Journal of Science, s3–28(165): 213–220, doi: https://doi.org/10.2475/ajs.s3-28.165.213

    Article  Google Scholar 

  • Verrill A E. 1899. North American Ophiuroidea: I. Revision of certain families and genera of West Indian Ophiurans. II. A faunal catalogue of the knows species of West Indian Ophiurans. Transactions of the Connecticut Academy of Arts and Science, 10: 301–386

    Article  Google Scholar 

  • Victorero L, Robert K, Robinson L F, et al. 2018. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Scientific Reports, 8: 4152, doi: https://doi.org/10.1038/s41598-018-22296-8

    Article  Google Scholar 

  • Wang Dexiang, Wang Chunsheng, Zhang Yuan, et al. 2016. Three new species of glass sponges Pheronematidae (Porifera: Hexactinellida) from the deep-sea of the northwestern Pacific Ocean. Zootaxa, 4171(3): 562–574, doi: https://doi.org/10.11646/zootaxa.4171.3.10

    Article  Google Scholar 

  • Watling L, Auster P J. 2017. Seamounts on the high seas should be managed as vulnerable marine ecosystems. Frontiers in Marine Science, 4: 14

    Article  Google Scholar 

  • Woolley S N C, Tittensor D P, Dunstan P K, et al. 2016. Deep-sea diversity patterns are shaped by energy availability. Nature, 533(7603): 393–396, doi: https://doi.org/10.1038/nature17937

    Article  Google Scholar 

  • Xu Peng, Liu Feng, Ding Zhongjun, et al. 2016. A new species of the thorid genus Paralebbeus Bruce & Chace, 1986 (Crustacea: Decapoda: Caridea) from the deep sea of the Northwestern Pacific Ocean. Zootaxa, 4085(1): 119–126, doi: https://doi.org/10.11646/zootaxa.4085.1.5

    Article  Google Scholar 

  • Xu Peng, Zhou Yadong, Wang Chunsheng. 2017. A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae). Zookeys, 685: 1–14, doi: https://doi.org/10.3897/zookeys.685.11341

    Article  Google Scholar 

  • Yesson C, Clark M R, Taylor M L, et al. 2011. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Research Part I: Oceanographic Research Papers, 58(4): 442–453, doi: https://doi.org/10.1016/j.dsr.2011.02.004

    Article  Google Scholar 

  • Zhang Dongsheng, Lu Bo, Wang Chunsheng, et al. 2018. The first record of Ophioleila elegans (Echinodermata: Ophiuroidea) from a deep-sea seamount in the Northwest Pacific Ocean. Acta Oceanologica Sinica, 37(10): 180–184, doi: https://doi.org/10.1007/s13131-018-1323-0

    Article  Google Scholar 

  • Zhang Ruiyan, Wang Chunsheng, Zhou Yadong, et al. 2019. Morphology and molecular phylogeny of two new species in genus Freyastera (Asteroidea: Brisingida: Freyellidae), with a revised key to close species and ecological remarks. Deep-Sea Research Part I: Oceanographic Research Papers, 154: 103163, doi: https://doi.org/10.1016/j.dsr.2019.103163

    Article  Google Scholar 

  • Zhang Ruiyan, Zhou Yadong, Xiao Ning, et al. 2020. A new sponge-associated starfish, Astrolirus patricki sp. nov. (Asteroidea: Brisingida: Brisingidae), from the northwestern Pacific seamounts. PeerJ, 8(26): e9071, doi: https://doi.org/10.7717/peerj.9071

    Article  Google Scholar 

Download references

Acknowledgements

We thank all crew for their help with the field investigations. We appreciate the Jiaolong team from the National Deep Sea Center, the Haima team from the Guangzhou Marine Geological Survey, the Hailong III team from the National Deep Sea Center and Shanghai Jiao Tong University for their wonderful assistance during sample collection. We also thank Xiaogu Wang for his help with specimen processing on board, storage and management.

Funding

The National Natural Science Foundation of China under contract No. 42076135; the China Ocean Mineral Resources R&D Association under contract Nos DY135-E2-2-03 and DY135-E2-2-06; the Project of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, under contract No. SOEDZZ2002; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract No. JG1528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Na, J., Shen, C. et al. Ophiuroid fauna of cobalt-rich crust seamounts in the Northwest Pacific Ocean. Acta Oceanol. Sin. 40, 55–78 (2021). https://doi.org/10.1007/s13131-021-1887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1887-y

Key words

Navigation