Skip to main content
Log in

Dynamics of seasonal and interannual variability of the ocean bottom pressure in the Southern Ocean

  • Articles
  • Physical Oceanography, Marine Meteorology and Marine Physics
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Seasonal and interannual variability of ocean bottom pressure (OBP) in the Southern Ocean was investigated using Gravity Recovery and Climate Experiment (GRACE) data and a Pressure Coordinate Ocean Model (PCOM) based on mass conservation. By comparing OBP, steric sea level, and sea level, it is found that at high latitudes the OBP variability dominates the sea level variability at seasonal-to-decadal time scales. The diagnostic OBP based on barotropic vorticity equation has a good correlation with the observations, indicating that wind forcing plays an important role in the variability of the OBP in the Southern Ocean. The unique interannual patterns of OBP in the Southern Ocean are closely associated with El Niño-Southern Oscillation (ENSO) and Southern Annular Mode (SAM). Regression analysis indicates that ENSO and SAM influence the OBP through altering the Ekman transport driven by surface wind. The leading pattern of OBP from PCOM are very similar to observations. Sensitive experiments of PCOM show that surface wind forcing explains the observed OBP variability quite well, confirming the importance of wind forcing and related oceanic processes. In the eastern South Pacific, the averaged OBP shows a decrease (increase) trend before (after) 2011, reflecting the reverse trend in westerly wind. In the South Indo-Atlantic Ocean, the averaged OBP has a weak increase trend during 2003–2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Androsov A, Boebel O, Schröter J, et al. 2020. Ocean bottom pressure variability: Can it be reliably modeled?. Journal of Geophysical Research: Oceans, 125(3): e2019JC015469

    Google Scholar 

  • Antonov J I, Seidov D, Boyer T P, et al. 2010. World Ocean Atlas 2009, Volume 2: Salinity. NOAA Atlas NESDIS 69. Washington, DC: U S Government Printing Office

    Google Scholar 

  • Bergmann I, Dobslaw H. 2012. Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. Journal of Geophysical Research: Oceans, 117(C5): C05044

    Article  Google Scholar 

  • Boening C, Lee T, Zlotnicki V. 2011. A record-high ocean bottom pressure in the South Pacific observed by GRACE. Geophysical Research Letters, 38(4): L04602

    Article  Google Scholar 

  • Boening C, Willis J K, Landerer F W, et al. 2012. The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters, 39(19): L19602

    Article  Google Scholar 

  • Brunnabend S E, Rietbroek R, Timmermann R, et al. 2011. Improving mass redistribution estimates by modeling ocean bottom pressure uncertainties. Journal of Geophysical Research: Oceans, 116(C8): C08037

    Article  Google Scholar 

  • Cabanes C, Huck T, De Verdière A C. 2006. Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. Journal of Physical Oceanography, 36(9): 1739–1750, doi: https://doi.org/10.1175/JPO2935.1

    Article  Google Scholar 

  • Cazenave A, Dieng H B, Meyssignac B, et al. 2014. The rate of sealevel rise. Nature Climate Change, 4(5): 358–361, doi: https://doi.org/10.1038/nclimate2159

    Article  Google Scholar 

  • Cazenave A, Henry O, Munier S, et al. 2012. Estimating ENSO influence on the global mean sea level, 1993–2010. Marine Geodesy, 35(S1): 82–97

    Article  Google Scholar 

  • Chambers D P, Cazenave A, Champollion N, et al. 2017. Evaluation of the global mean sea level budget between 1993 and 2014. Surveys in Geophysics, 38(1): 309–327, doi: https://doi.org/10.1007/s10712-016-9381-3

    Article  Google Scholar 

  • Cheng Xuhua, Li Lijuan, Du Yan, et al. 2013. Mass-induced sea level change in the northwestern North Pacific and its contribution to total sea level change. Geophysical Research Letters, 40(15): 3975–3980, doi: https://doi.org/10.1002/grl.50748

    Article  Google Scholar 

  • Dukowicz J K. 1997. Steric sea level in the los alamos POP code—non-boussinesq effects. Atmosphere-Ocean, 35(S1): 533–546

    Article  Google Scholar 

  • Fasullo J T, Boening C, Landerer F W, et al. 2013. Australia’s unique influence on global sea level in 2010–2011. Geophysical Research Letters, 40(16): 4368–4373, doi: https://doi.org/10.1002/grl.50834

    Article  Google Scholar 

  • Gill A E, Niller P P. 1973. The theory of the seasonal variability in the ocean. Deep Sea Research and Oceanographic Abstracts, 20(2): 141–177, doi: https://doi.org/10.1016/0011-7471(73)90049-1

    Article  Google Scholar 

  • Greatbatch R J. 1994. A note on the representation of steric sea level in models that conserve volume rather than mass. Journal of Geophysical Research: Oceans, 99(C6): 12767–12771, doi: https://doi.org/10.1029/94JC00847

    Article  Google Scholar 

  • Henley B J, Gergis J, Karoly D J, et al. 2015. A tripole index for the interdecadal Pacific oscillation. Climate Dynamics, 45(11/12): 3077–3090, doi: https://doi.org/10.1007/s00382-015-2525-1

    Article  Google Scholar 

  • Huang Ruixin, Jin Xiangze, Zhang Xuehong. 2001. An oceanic general circulation model in pressure coordinates. Advances in Atmospheric Sciences, 18(1): 1–22, doi: https://doi.org/10.1007/s00376-001-0001-9

    Article  Google Scholar 

  • Johnson G C, Chambers D P. 2013. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. Journal of Geophysical Research: Oceans, 118(9): 4228–4240, doi: https://doi.org/10.1002/jgrc.20307

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472, doi: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Li Hong, Xu Fanghua, Zhou Wei, et al. 2017. Development of a global gridded Argo data set with Barnes successive corrections. Journal of Geophysical Research: Oceans, 122(2): 866–889, doi: https://doi.org/10.1002/2016JC012285

    Article  Google Scholar 

  • Liau J R, Chao B F. 2017. Variation of Antarctic circumpolar current and its intensification in relation to the southern annular mode detected in the time-variable gravity signals by GRACE satellite. Earth, Planets and Space, 69: 93

    Article  Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, et al. 2010. World Ocean Atlas 2009, Volume 1: Temperature. NOAA Atlas NESDIS 68. Washington, DC: U S Government Printing Office

    Google Scholar 

  • Makowski J K, Chambers D P, Bonin J A. 2015. Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean. Journal of Geophysical Research: Oceans, 120(6): 4245–4259, doi: https://doi.org/10.1002/2014JC010575

    Article  Google Scholar 

  • Marshall G J. 2003. Trends in the southern annular mode from observations and reanalyses. Journal of Climate, 16(24): 4134–4143, doi: https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

    Article  Google Scholar 

  • Meredith M P, Woodworth P L, Chereskin T K, et al. 2011. Sustained monitoring of the southern ocean at drake passage: Past achievements and future priorities. Reviews of Geophysics, 49(4): RG4005

    Article  Google Scholar 

  • Ou Niansen, Lin Yihua, Bi Xunqiang, et al. 2016. Baseline evaluation of a pressure coordinate ocean model (PCOM 1.0). Climatic and Environmental Research, 21(1): 56–64

    Google Scholar 

  • Peralta-Ferriz C, Landerer F W, Chambers D, et al. 2017. Remote sensing of bottom pressure from GRACE satellites. US CLIVAR Variations Newsletter, 15(2): 22–28

    Google Scholar 

  • Piecuch C G, Quinn K J, Ponte R M. 2013. Satellite-derived interannual ocean bottom pressure variability and its relation to sea level. Geophysical Research Letters, 40(12): 3106–3110, doi: https://doi.org/10.1002/grl.50549

    Article  Google Scholar 

  • Ponte R M. 1999. A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean. Journal of Geophysical Research: Oceans, 104(C1): 1289–1300, doi: https://doi.org/10.1029/1998JC900028

    Article  Google Scholar 

  • Ponte R M, Piecuch C G. 2014. Interannual bottom pressure signals in the Australian-Antarctic and Bellingshausen basins. Journal of Physical Oceanography, 44(5): 1456–1465, doi: https://doi.org/10.1175/JPO-D-13-0223.1

    Article  Google Scholar 

  • Quinn K J, Ponte R M. 2012. High frequency barotropic ocean variability observed by GRACE and satellite altimetry. Geophysical Research Letters, 39(7): L07603

    Article  Google Scholar 

  • Song Y T, Zlotnicki V. 2008. Subpolar ocean bottom pressure oscillation and its links to the tropical ENSO. International Journal of Remote Sensing, 29(21): 6091–6107, doi: https://doi.org/10.1080/01431160802175538

    Article  Google Scholar 

  • Stammer D, Tokmakian R, Semtner A, et al. 1996. How well does a 1/4° global circulation model simulate large-scale oceanic observations?. Journal of Geophysical Research: Oceans, 101(C11): 25779–25811

    Article  Google Scholar 

  • Stepanov V N, Hughes C W. 2006. Propagation of signals in basin-scale ocean bottom pressure from a barotropic model. Journal of Geophysical Research: Oceans, 111(C12): C12002, doi: https://doi.org/10.1029/2005JC003450

    Article  Google Scholar 

  • Thomson R E, Tabata S. 1989. Steric sea level trends in the Northeast Pacific Ocean: Possible evidence of global sea level rise. Journal of Climate, 2(6): 542–553, doi: https://doi.org/10.1175/1520-0442(1989)002<0542:SSLTIT>2.0.CO;2

    Article  Google Scholar 

  • Vivier F, Kelly K A, Harismendy M. 2005. Causes of large-scale sea level variations in the Southern Ocean: Analyses of sea level and a barotropic model. Journal of Geophysical Research: Oceans, 110(C9): C09014

    Article  Google Scholar 

  • Wang Juan, Wang Jing, Cheng Xuhua. 2015. Mass-induced sea level variations in the Gulf of Carpentaria. Journal of Oceanography, 71(4): 449–461, doi: https://doi.org/10.1007/s10872-015-0304-6

    Article  Google Scholar 

  • Zhang Yu, Lin Yihua, Huang Ruixin. 2014. A climatic dataset of ocean vertical turbulent mixing coefficient based on real energy sources. Science China Earth Sciences, 57(10): 2435–2446, doi: https://doi.org/10.1007/s11430-014-4904-6

    Article  Google Scholar 

  • Zlotnicki V, Wahr J, Fukumori I, et al. 2007. Antarctic circumpolar current transport variability during 2003–05 from GRACE. Journal of Physical Oceanography, 37(2): 230–244, doi: https://doi.org/10.1175/JPO3009.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhua Cheng.

Additional information

Foundation item: The National Key R&D Program of China under contract No. 2018YFA0605703; the National Natural Science Foundation of China under contract Nos 41876002 and 41876224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Cheng, X., Ou, N. et al. Dynamics of seasonal and interannual variability of the ocean bottom pressure in the Southern Ocean. Acta Oceanol. Sin. 41, 78–89 (2022). https://doi.org/10.1007/s13131-021-1878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1878-z

Key words

Navigation