Skip to main content

Spatiotemporal variations in the organic carbon accumulation rate in mangrove sediments from the Yingluo Bay, China, since 1900

Abstract

Mangroves can not only provide multiple ecosystem service functions, but are also efficient carbon producers, capturers, and sinks. The estimation of the organic carbon accumulation rate (OCAR) in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget. In particular, understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment. In this study, three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay, China, were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area. The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature. However, in the mangrove fringe, the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR, particularly after the 1940s. Furthermore, the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior, while the strengthened hydrodynamic conditions after the 1940s broke this original pattern.

This is a preview of subscription content, access via your institution.

References

  1. Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219, doi: https://doi.org/10.1146/annurev-marine-010213-135020

    Article  Google Scholar 

  2. Alongi D. 2020. Global significance of mangrove blue carbon in climate change mitigation (version 1). Sci, 2(3): 57, doi: https://doi.org/10.3390/sci2030057

    Article  Google Scholar 

  3. Alongi D M, Pfitzner J, Trott L A, et al. 2005. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 63(4): 605–618, doi: https://doi.org/10.1016/j.ecss.2005.01.004

    Article  Google Scholar 

  4. Appleby P G, Oldfield F. 1992. Application of 210Pb to sedimentation studies. In: Ivanovich M, Harmon R S, eds. Uranium-Series Disequilibrium. Oxford: Clarendon Press, 31–778

    Google Scholar 

  5. Arias-Ortiz A, Masqué P, Garcia-Orellana J, et al. 2018. Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems—setting the record straight. Biogeosciences, 15(22): 6791–6818, doi: https://doi.org/10.5194/bg-15-6791-2018

    Article  Google Scholar 

  6. Bellprat O, Guemas V, Doblas-Reyes F, et al. 2019. Towards reliable extreme weather and climate event attribution. Nature Communications, 10(1): 1732, doi: https://doi.org/10.1038/s41467-019-09729-2

    Article  Google Scholar 

  7. Bouillon S, Moens T, Overmeer I, et al. 2004. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series, 278: 77–88, doi: https://doi.org/10.3354/meps278077

    Article  Google Scholar 

  8. Breithaupt J L, Smoak J M, Bianchi T S, et al. 2020. Increasing rates of carbon burial in southwest florida coastal wetlands. Journal of Geophysical Research, 125(2): e2019JG005349

    Google Scholar 

  9. Breithaupt J L, Smoak J M, Smith III T J, et al. 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles, 26(3): GB3011

    Article  Google Scholar 

  10. Breithaupt J L, Smoak J M, Smith III T J, et al. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research, 119(10): 2032–2048

    Google Scholar 

  11. Caratini C, Bentaleb I, Fontugne M, et al. 1994. A less humid climate since ca. 3500 yr B.P. from marine cores off Karwar, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2–4): 371–384

    Article  Google Scholar 

  12. Chi Xiaoxiao, Yin Zhan’e, Wang Xuan, et al. 2016. Spatiotemporal variations of precipitation extremes of China during the past 50 years (1960–2009). Theoretical and Applied Climatology, 124(3): 555–564

    Article  Google Scholar 

  13. Cohen M C L, Lara R J, Cuevas E, et al. 2016. Effects of sea-level rise and climatic changes on mangroves from southwestern littoral of Puerto Rico during the middle and late Holocene. CATENA, 143: 187–200, doi: https://doi.org/10.1016/j.catena.2016.03.041

    Article  Google Scholar 

  14. Cuellar-Martinez T, Ruiz-Fernández A C, Sanchez-Cabeza J A, et al. 2020. Temporal records of organic carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the Anthropocene. Global and Planetary Change, 192: 103215, doi: https://doi.org/10.1016/j.gloplacha.2020.103215

    Article  Google Scholar 

  15. Dittmar T, Lara R J, Kattner G. 2001. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters. Marine Chemistry, 73(3–4): 253–271, doi: https://doi.org/10.1016/S0304-4203(00)00110-9

    Article  Google Scholar 

  16. Donato D C, Kauffman J B, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5): 293–297, doi: https://doi.org/10.1038/ngeo1123

    Article  Google Scholar 

  17. Dong Yanru, Li Yue, Kong Fanlong, et al. 2020. Source, structural characteristics and ecological indication of dissolved organic matter extracted from sediments in the primary tributaries of the Dagu River. Ecological Indicators, 109: 105776, doi: https://doi.org/10.1016/j.ecolind.2019.105776

    Article  Google Scholar 

  18. Duarte C M. 2017. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences, 14(2): 301–310, doi: https://doi.org/10.5194/bg-14-301-2017

    Article  Google Scholar 

  19. Duarte C M, Middelburg J J, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1): 1–8, doi: https://doi.org/10.5194/bg-2-1-2005

    Article  Google Scholar 

  20. Duke N C, Meynecke J O, Dittmann S, et al. 2007. A world without mangroves?. Science, 317(5834): 41–42

    Article  Google Scholar 

  21. Ellison J C. 2008. Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review. Aquatic Botany, 89(2): 93–104, doi: https://doi.org/10.1016/j.aquabot.2008.02.007

    Article  Google Scholar 

  22. Fan Hangqing, Chen Guanghua, He Binyuan, et al. 2005. Coastal Wetland and Management of Shankou Mangroves (in Chinese). Beijing: China Ocean Press, 35–89

    Google Scholar 

  23. França M C, Francisquini M I, Cohen M C L, et al. 2014. Inter-proxy evidence for the development of the Amazonian mangroves during the Holocene. Vegetation History and Archaeobotany, 23(5): 527–542, doi: https://doi.org/10.1007/s00334-013-0420-4

    Article  Google Scholar 

  24. Frederikse T, Landerer F, Caron L, et al. 2020. The causes of sea-level rise since 1900. Nature, 584(7821): 393–397, doi: https://doi.org/10.1038/s41586-020-2591-3

    Article  Google Scholar 

  25. Gonneea M E, Paytan A, Herrera-Silveira J A. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2): 211–227, doi: https://doi.org/10.1016/j.ecss.2004.04.015

    Article  Google Scholar 

  26. Guo Zhigang, Lin Tian, Zhang Gan, et al. 2007. The sedimentary fluxes of polycyclic aromatic hydrocarbons in the Yangtze River Estuary coastal sea for the past century. Science of the Total Environment, 386(1–3): 33–41, doi: https://doi.org/10.1016/j.scitotenv.2007.07.019

    Article  Google Scholar 

  27. Hapsari K A, Biagioni S, Jennerjahn T C, et al. 2017. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quaternary Science Reviews, 169: 173–187, doi: https://doi.org/10.1016/j.quascirev.2017.05.026

    Article  Google Scholar 

  28. Hatje V, Masqué P, Patire V F, et al. 2021. Blue carbon stocks, accumulation rates, and associated spatial variability in Brazilian mangroves. Limnology and Oceanography, 66(2): 321–334, doi: https://doi.org/10.1002/lno.11607

    Article  Google Scholar 

  29. Herbeck L S, Unger D, Krumme U, et al. 2011. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuarine, Coastal and Shelf Science, 93(4): 375–388, doi: https://doi.org/10.1016/j.ecss.2011.05.004

    Article  Google Scholar 

  30. Huang Xuesong, Kuang Xueyuan, Qin Zhengrong, et al. 2007. Multi-time-scale variations of recent centenary series of temperature and precipitation in Guangxi of China. Advances in Climate Change Research (in Chinese), 3(6): 362–367

    Google Scholar 

  31. Jennerjahn T C. 2012. Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Science Reviews, 114(1–2): 19–41, doi: https://doi.org/10.1016/j.earscirev.2012.04.005

    Article  Google Scholar 

  32. Jennerjahn T C, Ittekkot V. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1): 23–30, doi: https://doi.org/10.1007/s00114-001-0283-x

    Article  Google Scholar 

  33. Krishnaswamy S, Lal D, Martin J M, et al. 1971. Geochronology of lake sediments. Earth and Planetary Science Letters, 11(1–5): 407–414, doi: https://doi.org/10.1016/0012-821X(71)90202-0

    Article  Google Scholar 

  34. Kristensen E, Bouillon S, Dittmar T, et al. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89(2): 201–219, doi: https://doi.org/10.1016/j.aquabot.2007.12.005

    Article  Google Scholar 

  35. Kusumaningtyas M A, Hutahaean A A, Fischer H W, et al. 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218: 310–323, doi: https://doi.org/10.1016/j.ecss.2018.12.007

    Article  Google Scholar 

  36. Lamb A L, Wilson G P, Leng M J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews, 75(1–4): 29–57, doi: https://doi.org/10.1016/j.earscirev.2005.10.003

    Article  Google Scholar 

  37. Li Zhen, Zhang Zhiying, Li Jie, et al. 2008. Pollen distribution in surface sediments of a mangrove system, Yingluo Bay, Guangxi, China. Review of Palaeobotany and Palynology, 152(1–2): 21–31, doi: https://doi.org/10.1016/j.revpalbo.2008.04.001

    Article  Google Scholar 

  38. MacKenzie R A, Foulk P B, Klump J V, et al. 2016. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Wetlands Ecology and Management, 24(2): 245–261, doi: https://doi.org/10.1007/s11273-016-9481-3

    Article  Google Scholar 

  39. Matos C R L, Berrêdo J F, Machado W, et al. 2020. Carbon and nutrient accumulation in tropical mangrove creeks, Amazon region. Marine Geology, 429: 106317, doi: https://doi.org/10.1016/j.margeo.2020.106317

    Article  Google Scholar 

  40. Mcleod E, Chmura G L, Bouillon S, et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552–560, doi: https://doi.org/10.1890/110004

    Article  Google Scholar 

  41. Meng Xianwei, Xia Peng, Li Zhen, et al. 2016. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD: Mangrove-derived organic matter and pollen. Organic Geochemistry, 98: 166–175, doi: https://doi.org/10.1016/j.orggeochem.2016.06.001

    Article  Google Scholar 

  42. Meng Xianwei, Xia Peng, Li Zhen, et al. 2017. Mangrove development and its response to Asian monsoon in the Yingluo Bay (SW China) over the last 2000 years. Estuaries and Coasts, 40(2): 540–552, doi: https://doi.org/10.1007/s12237-016-0156-3

    Article  Google Scholar 

  43. Meng Xianwei, Zhang Chuangzhi. 2014. Basic Situations of Marine Environment and Resources in Guangxi (in Chinese). Beijing: China Ocean Press, 5–22

    Google Scholar 

  44. Nellemann C, Corcoran E, Duarte C, et al. 2009. Blue Carbon: the Role of Healthy Oceans in Binding Carbon. Norway: United Nations Environment Programme, 11–65

    Google Scholar 

  45. Osland M J, Day R H, Hall C T, et al. 2017. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology, 98(1): 125–137, doi: https://doi.org/10.1002/ecy.1625

    Article  Google Scholar 

  46. Robbins J A, Edgington D N. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta, 39(3): 285–304, doi: https://doi.org/10.1016/0016-7037(75)90198-2

    Article  Google Scholar 

  47. Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 82: 183–200, doi: https://doi.org/10.1016/j.gca.2010.12.024

    Article  Google Scholar 

  48. Sanders C J, Smoak J M, Naidu A S, et al. 2010. Organic carbon burial in a mangrove forest, margin and intertidal mud flat. Estuarine, Coastal and Shelf Science, 90(3): 168–172, doi: https://doi.org/10.1016/j.ecss.2010.08.013

    Article  Google Scholar 

  49. Sasmito S D, Kuzyakov Y, Lubis A A, et al. 2020. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. CATENA, 187: 104414, doi: https://doi.org/10.1016/j.catena.2019.104414

    Article  Google Scholar 

  50. Smoak J M, Breithaupt J L, Smith III T J, et al. 2013. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. CATENA, 104: 58–66, doi: https://doi.org/10.1016/j.catena.2012.10.009

    Article  Google Scholar 

  51. Tateda Y, Nhan D D, Wattayakorn G, et al. 2005. Preliminary evaluation of organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210Pb chronology. Radioprotection, 40: S527–S532, doi: https://doi.org/10.1051/radiopro:2005s1-077

    Article  Google Scholar 

  52. Veettil B K, Ward R D, Quang N X, et al. 2019. Mangroves of Vietnam: Historical development, current state of research and future threats. Estuarine, Coastal and Shelf Science, 218: 212–236, doi: https://doi.org/10.1016/j.ecss.2018.12.021

    Article  Google Scholar 

  53. Woodroffe C D, Rogers K, McKee K L, et al. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8: 243–266, doi: https://doi.org/10.1146/annurev-marine-122414-034025

    Article  Google Scholar 

  54. Xia Peng, Meng Xianwei, Li Zhen, et al. 2015. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years: stable carbon isotopes and mangrove pollen. Organic Geochemistry, 85: 32–41, doi: https://doi.org/10.1016/j.orggeochem.2015.04.003

    Article  Google Scholar 

  55. Xia Peng, Meng Xianwei, Zhang Yao, et al. 2021. The potential of mangrove-derived organic matter in sediments for tracing mangrove development during the holocene. Estuaries and Coasts, 44(4): 1020–1035, doi: https://doi.org/10.1007/s12237-020-00826-w

    Article  Google Scholar 

  56. Xue Bo, Yan Chongling, Lu Haoliang, et al. 2009. Mangrove-derived organic carbon in sediment from Zhangjiang Estuary (China) mangrove wetland. Journal of Coastal Research, 2009(254): 949–956

    Article  Google Scholar 

  57. Yang Juan, Gao Jay, Liu Baolin, et al. 2014. Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, southern China. Estuarine, Coastal and Shelf Science, 136: 3–10, doi: https://doi.org/10.1016/j.ecss.2013.11.020

    Article  Google Scholar 

  58. Zhang Yao, Meng Xianwei, Bai Yazhi, et al. 2021. Sources and features of particulate organic matter in tropical small mountainous rivers (SW China) under the effects of anthropogenic activities. Ecological Indicators, 125: 107471, doi: https://doi.org/10.1016/j.ecolind.2021.107471

    Article  Google Scholar 

Download references

Acknowledgements

We specially thanks to Tim C. Jennerjahn of the Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany, for the assistance and feedback on our original manuscript. We also thank Guoan Wang from China Agricultural University for the laboratory analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xianwei Meng.

Additional information

Foundation item

The National Natural Science Foundation of China under contract Nos 41976068 and 41576061.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Meng, X., Xia, P. et al. Spatiotemporal variations in the organic carbon accumulation rate in mangrove sediments from the Yingluo Bay, China, since 1900. Acta Oceanol. Sin. (2021). https://doi.org/10.1007/s13131-021-1864-5

Download citation

Key words

  • spatiotemporal variation
  • organic carbon accumulation rate
  • organic carbon source
  • mangrove development
  • temperature
  • hydrologic conditions