Skip to main content

Estimating submarine groundwater discharge at a subtropical river estuary along the Beibu Gulf, China

Abstract

In certain regions, submarine groundwater discharge (SGD) into the ocean plays a significant role in coastal material fluxes and their biogeochemical cycle; therefore, the impact of SGD on the ecosystem cannot be ignored. In this study, SGD was estimated using naturally occurring radium isotopes (223Ra and 224Ra) in a subtropical estuary along the Beibu Gulf, China. The results showed that the Ra activities of submarine groundwater were approximately 10 times higher than those of surface water. By assuming a steady state and using an Ra mass balance model, the SGD flux in May 2018 was estimated to be 5.98×106 m3/d and 3.60×106 m3/d based on 224Ra and 223Ra, respectively. At the same time, the activities of Ra isotopes fluctuated within a tidal cycle; that is, a lower activity was observed at high tide and a higher activity was seen at low tide. Based on these variations, the average tidal pumping fluxes of SGD were 1.15×106 m3/d and 2.44×106 m3/d with 224Ra and 223Ra, respectively. Tidal-driven SGD accounts for 24%–51% of the total SGD. Therefore, tidal pumping is an important driving force of the SGD in the Dafengjiang River (DFJR) Estuary. Furthermore, the SGD of the DFJR Estuary in the coastal zone contributes significantly to the seawater composition of the Beibu Gulf and the material exchange between land and sea.

This is a preview of subscription content, access via your institution.

References

  1. Adyasari D, Oehler T, Afiati N, et al. 2018. Groundwater nutrient inputs into an urbanized tropical estuary system in Indonesia. Science of the Total Environment, 627: 1066–1079, doi: https://doi.org/10.1016/j.scitotenv.2018.01.281

    Article  Google Scholar 

  2. Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219, doi: https://doi.org/10.1146/annurev-marine-010213-135020

    Article  Google Scholar 

  3. Atkins M L, Santos I R, Ruiz-Halpern S, et al. 2013. Carbon dioxide dynamics driven by groundwater discharge in a coastal flood-plain creek. Journal of Hydrology, 493: 30–42, doi: https://doi.org/10.1016/j.jhydrol.2013.04.008

    Article  Google Scholar 

  4. Beck A J, Rapaglia J P, Cochran J K, et al. 2007. Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3–4): 419–441, doi: https://doi.org/10.1016/j.marchem.2007.03.008

    Article  Google Scholar 

  5. Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1–2): 3–33

    Article  Google Scholar 

  6. Charette M A. 2007. Hydrologic forcing of submarine groundwater discharge: insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnology and Oceanography, 52(1): 230–239, doi: https://doi.org/10.4319/lo.2007.52.1.0230

    Article  Google Scholar 

  7. Charette M A, Buesseler K O. 2004. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnology and Oceanography, 49(2): 376–385, doi: https://doi.org/10.4319/lo.2004.49.2.0376

    Article  Google Scholar 

  8. Charette M A, Henderson P B, Breier C F, et al. 2013. Submarine groundwater discharge in a river-dominated Florida estuary. Marine Chemistry, 156: 3–17, doi: https://doi.org/10.1016/j.marchem.2013.04.001

    Article  Google Scholar 

  9. Chen Xiaogang, Cukrov N, Santos I R, et al. 2020. Karstic submarine groundwater discharge into the Mediterranean: radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochimica et Cosmochimica Acta, 268: 467–484, doi: https://doi.org/10.1016/j.gca.2019.08.019

    Article  Google Scholar 

  10. Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?. Journal of Geophysical Research: Oceans, 123(9): 6962–6979, doi: https://doi.org/10.1029/2018JC014448

    Google Scholar 

  11. Colbert S L, Hammond D E. 2008. Shoreline and seafloor fluxes of water and short-lived Ra isotopes to surface water of San Pedro Bay, CA. Marine Chemistry, 108(1–2): 1–17, doi: https://doi.org/10.1016/j.marchem.2007.09.004

    Article  Google Scholar 

  12. Garcia-Solsona E, Masqué P, Garcia-Orellana J, et al. 2008. Estimating submarine groundwater discharge around Isola La Cura, northern Venice Lagoon (Italy), by using the radium quartet. Marine Chemistry, 109(3–4): 292–306, doi: https://doi.org/10.1016/j.marchem.2008.02.007

    Article  Google Scholar 

  13. Gu Hequan, Moore W S, Zhang Lei, et al. 2012. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Continental Shelf Research, 35: 95–107, doi: https://doi.org/10.1016/j.csr.2012.01.002

    Article  Google Scholar 

  14. Guo Jing. 2020. Nitrogen biogeochemical processes and geochemical record of anthropogenic nutrient loading in coastal regions of Beibu Gulf, Guangxi Province (in Chinese) [dissertation]. Nanning: Guangxi University

    Google Scholar 

  15. Guo Zhanrong, Huang Lei, Yuan Xiaojie, et al. 2011. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes. Advances in Water Science (in Chinese), 22(1): 118–125

    Google Scholar 

  16. Hong Qingquan, Cai Pinghe, Shi Xiangming, et al. 2017. Solute transport into the Jiulong River estuary via pore water exchange and submarine groundwater discharge: new insights from 224Ra/228Th disequilibrium. Geochimica et Cosmochimica Acta, 198: 338–359, doi: https://doi.org/10.1016/j.gca.2016.11.002

    Article  Google Scholar 

  17. Ji Tao, Du Jinzhou, Moore W S, et al. 2013. Nutrient inputs to a Lagoon through submarine groundwater discharge: the case of Laoye Lagoon, Hainan, China. Journal of Marine Systems, 111–112: 253–262, doi: https://doi.org/10.1016/j.jmarsys.2012.11.007

    Article  Google Scholar 

  18. Johannes R E. 1980. Ecological significance of the submarine discharge of groundwater. Marine Ecology Progress Series, 3(4): 365–373

    Article  Google Scholar 

  19. Kelly R P, Moran S B. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnology and Oceanography, 47(6): 1796–1807, doi: https://doi.org/10.4319/lo.2002.47.6.1796

    Article  Google Scholar 

  20. Kwon E Y, Kim G, Primeau F, et al. 2014. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23): 8438–8444, doi: https://doi.org/10.1002/2014GL061574

    Article  Google Scholar 

  21. Li Pingyang, Xue Rui, Wang Yinghui, et al. 2015. Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk. Marine Pollution Bulletin, 90(1–2): 218–226, doi: https://doi.org/10.1016/j.marpolbul.2014.10.048

    Article  Google Scholar 

  22. Lin Junliang, Li Qiurong, Huang Huilin, et al. 2018. A study of pollutant fluxes variations in main sea-going rivers of Guangxi in recent ten years. Journal of Qinzhou University (in Chinese), 33(10): 8–15

    Google Scholar 

  23. Liu Huatai, Guo Zhanrong, Gao Aiguo, et al. 2016. 18O and 226Ra in the Minjiang River estuary, China and their hydrological implications. Estuarine, Coastal and Shelf Science, 173: 93–101, doi: https://doi.org/10.1016/j.ecss.2015.12.023

    Article  Google Scholar 

  24. Liu Jianan, Du Jinzhou, Wu Ying, et al. 2018. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary. Estuarine, Coastal and Shelf Science, 203: 17–28, doi: https://doi.org/10.1016/j.ecss.2018.02.005

    Article  Google Scholar 

  25. Liu Jianan, Hrustić E, Du Jinzhou, et al. 2019. Net submarine ground-water-derived dissolved inorganic nutrients and carbon input to the oligotrophic stratified karstic estuary of the Krka River (Adriatic Sea, Croatia). Journal of Geophysical Research: Oceans, 124(6): 4334–4349, doi: https://doi.org/10.1029/2018JC014814

    Google Scholar 

  26. Liu Jin, Wu Yutian, Deng Shuang, et al. 2020. Depth profiles of 228Ra and 228Th in sediment cores in Nansha Sea Area. Environmental Chemistry (in Chinese), 39(8): 2272–2278

    Google Scholar 

  27. Lu Dongliang, Kang Zhenjun, Yang Bin, et al. 2020. Compositions and spatio-temporal distributions of different nitrogen species and lability of dissolved organic nitrogen from the Dafengjiang River to the Sanniang Bay, China. Marine Pollution Bulletin, 156: 111205, doi: https://doi.org/10.1016/j.marpolbul.2020.111205

    Article  Google Scholar 

  28. Luek J L, Beck A J. 2014. Radium budget of the York River estuary (VA, USA) dominated by submarine groundwater discharge with a seasonally variable groundwater end-member. Marine Chemistry, 165: 55–65, doi: https://doi.org/10.1016/j.marchem.2014.08.001

    Article  Google Scholar 

  29. Luo Hao, Li Linwei, Wang Jinlong, et al. 2019. The desorption of radium isotopes in river sediments in Qinzhou Bay. Haiyang Xuebao (in Chinese), 41(4): 27–41

    Google Scholar 

  30. Luo Jinfu, Li Tianshen, Lan Wenlu. 2016. Evolution trend and prevention strategy of algae bloom in the Beibu Gulf. Environmental Protection (in Chinese), 44(20): 40–42

    Google Scholar 

  31. Luo Yafei, Huang Haijun, Yan Liwen, et al. 2015. Distribution and diffusion of suspended matters based on remote sensing in the Dafengjiang Estuary. Transactions of Oceanology and Limnology (in Chinese), 27(3): 14–20

    Google Scholar 

  32. Maher D T, Santos I R, Golsby-Smith L, et al. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?. Limnology and Oceanography, 58(2): 475–488, doi: https://doi.org/10.4319/lo.2013.58.2.0475

    Article  Google Scholar 

  33. Makings U, Santos I R, Maher D T, et al. 2014. Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary. Estuarine, Coastal and Shelf Science, 143: 65–76, doi: https://doi.org/10.1016/j.ecss.2014.02.003

    Article  Google Scholar 

  34. Moore W S. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry, 66(1–2): 75–93

    Article  Google Scholar 

  35. Moore W S. 2006. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research, 26(7): 852–861, doi: https://doi.org/10.1016/j.csr.2005.12.004

    Article  Google Scholar 

  36. Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329, doi: https://doi.org/10.1029/95JC03139

    Article  Google Scholar 

  37. Moore W S, Beck M, Riedel T, et al. 2011. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea. Geochimica et Cosmochimica Acta, 75(21): 6535–6555, doi: https://doi.org/10.1016/j.gca.2011.08.037

    Article  Google Scholar 

  38. Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006

    Article  Google Scholar 

  39. Moore W S, Krest J. 2004. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico. Marine Chemistry, 86(3–4): 105–119, doi: https://doi.org/10.1016/j.marchem.2003.10.001

    Article  Google Scholar 

  40. Moore W S, Sarmiento J L, Key R M. 2008. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geoscience, 1(5): 309–311, doi: https://doi.org/10.1038/ngeo183

    Article  Google Scholar 

  41. Null K A, Corbett D R, DeMaster D J, et al. 2011. Porewater advection of ammonium into the Neuse River estuary, North Carolina, USA. Estuarine, Coastal and Shelf Science, 95(2–3): 314–325, doi: https://doi.org/10.1016/j.ecss.2011.09.016

    Article  Google Scholar 

  42. Petermann E, Knöller K, Rocha C, et al. 2018. Coupling end-member mixing analysis and isotope mass balancing (222-Rn) for differentiation of fresh and recirculated submarine groundwater discharge into Knysna Estuary, South Africa. Journal of Geophysical Research: Oceans, 123(2): 952–970, doi: https://doi.org/10.1002/2017JC013008

    Google Scholar 

  43. Peterson R N, Burnett W C, Taniguchi M, et al. 2008. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research: Oceans, 113(C9): C09021

    Article  Google Scholar 

  44. Prakash R, Srinivasamoorthy K, Gopinath S, et al. 2018. Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India. Applied Water Science, 8(1): 13, doi: https://doi.org/10.1007/s13201-018-0659-0

    Article  Google Scholar 

  45. Rahaman W, Singh S K. 2012. Sr and 87Sr/86Sr in estuaries of western India: impact of submarine groundwater discharge. Geochimica et Cosmochimica Acta, 85: 275–288, doi: https://doi.org/10.1016/j.gca.2012.02.025

    Article  Google Scholar 

  46. Rengarajan R, Sarma V V S S. 2015. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari estuary. Marine Chemistry, 172: 57–69, doi: https://doi.org/10.1016/j.marchem.2015.03.008

    Article  Google Scholar 

  47. Sadat-Noori M, Maher D T, Santos I R. 2016a. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries and Coasts, 39(3): 639–656, doi: https://doi.org/10.1007/s12237-015-0042-4

    Article  Google Scholar 

  48. Sadat-Noori M, Santos I R, Sanders C J, et al. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology, 528: 703–719, doi: https://doi.org/10.1016/j.jhydrol.2015.06.056

    Article  Google Scholar 

  49. Sadat-Noori M, Santos I R, Tait D R, et al. 2016b. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary. Science of the Total Environment, 566–567: 1440–1453, doi: https://doi.org/10.1016/j.scitotenv.2016.06.008

    Article  Google Scholar 

  50. Sadat-Noori M, Santos I R, Tait D R, et al. 2017. High porewater exchange in a mangrove-dominated estuary revealed from shortlived radium isotopes. Journal of Hydrology, 553: 188–198, doi: https://doi.org/10.1016/j.jhydrol.2017.07.058

    Article  Google Scholar 

  51. Sanders C J, Maher D T, Tait D R, et al. 2016. Are global mangrove carbon stocks driven by rainfall?. Journal of Geophysical Research: Biogeosciences, 121(10): 2600–2609, doi: https://doi.org/10.1002/2016JG003510

    Google Scholar 

  52. Santos I R, Bryan K R, Pilditch C A, et al. 2014. Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Marine Chemistry, 167: 57–70, doi: https://doi.org/10.1016/j.marchem.2014.04.006

    Article  Google Scholar 

  53. Schwartz M C. 2003. Significant groundwater input to a coastal plain estuary: assessment from excess radon. Estuarine, Coastal and Shelf Science, 56(1): 31–42, doi: https://doi.org/10.1016/S0272-7714(02)00118-X

    Article  Google Scholar 

  54. Su Ni, Du Jinzhou, Moore W S, et al. 2011. An examination of ground-water discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Science of the Total Environment, 409(19): 3909–3918, doi: https://doi.org/10.1016/j.scitotenv.2011.06.017

    Article  Google Scholar 

  55. Sun Jian, Lin Binliang, Li Kaiming, et al. 2014. A modelling study of residence time and exposure time in the Pearl River Estuary, China. Journal of Hydro-Environment Research, 8(3): 281–291, doi: https://doi.org/10.1016/j.jher.2013.06.003

    Article  Google Scholar 

  56. Swarzenski P W, Burnett W C, Greenwood W J, et al. 2006. Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophysical Research Letters, 33(24): L24405, doi: https://doi.org/10.1029/2006GL028282

    Article  Google Scholar 

  57. Wang Guizhi, Jing Wenping, Wang Shuling, et al. 2014. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environmental Science & Technology, 48(22): 13069–13075

    Article  Google Scholar 

  58. Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. 2015a. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochimica et Cosmochimica Acta, 149: 103–114, doi: https://doi.org/10.1016/j.gca.2014.11.001

    Article  Google Scholar 

  59. Wang Yali, Zhang Fenfen, Chen Xiaogang, et al. 2020. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: a case study from the Zhenzhu Bay, Guangxi. Haiyang Xuebao (in Chinese), 42(10): 37–46

    Google Scholar 

  60. Wang Yu, Xiang Peng, Ye Youyin, et al. 2015b. Ecological characteristics of phytoplankton community in the habitat of Sousa Chinensis at Sanniangwan Bay, Guangxi. Chinese Journal of Applied & Environmental Biology (in Chinese), 21(6): 1162–1169

    Google Scholar 

  61. Wang Zhangyong, Wang Guizhi, Wang Shuling. 2013. Estimation of submarine groundwater discharge into the Sanya River estuary in the winter using 223Ra and 224Ra as tracers. China Sciencepaper (in Chinese), 8(9): 915–919

    Google Scholar 

  62. Webb J R, Santos I R, Maher D T, et al. 2019. Groundwater as a source of dissolved organic matter to coastal waters: insights from radon and CDOM observations in 12 shallow coastal systems. Limnology and Oceanography, 64(1): 182–196, doi: https://doi.org/10.1002/lno.11028

    Article  Google Scholar 

  63. Xu Bochao, Dimova N T, Zhao Liang, et al. 2013. Determination of water ages and flushing rates using short-lived radium isotopes in large estuarine system, the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science, 121–122: 61–68, doi: https://doi.org/10.1016/j.ecss.2013.02.005

    Article  Google Scholar 

  64. Xu Shuqing, Li Jiaming, Lu Shibiao, et al. 2010. The status of Mangrove resources and sustainable development strategies in Beibu Gulf of Guangxi. Bulletin of Biology (in Chinese), 45(5): 11–14

    Google Scholar 

  65. Yang Bin, Kang Zhenjun, Lu Dongliang, et al. 2018. Spatial variations in the abundance and chemical speciation of phosphorus across the river-sea interface in the Northern Beibu Gulf. Water, 10(8): 1103, doi: https://doi.org/10.3390/w10081103

    Article  Google Scholar 

  66. Yang Jing, Zhang Renduo, Zhao Zhuangming, et al. 2015. Temporal and spatial distribution characteristics of nutrients in the coastal seawater of Guangxi Beibu Gulf during the past 25 years. Ecology and Environmental Sciences (in Chinese), 24(9): 1493–1498

    Google Scholar 

  67. Zhao Shibin, Xu Bochao, Yao Qinzhen, et al. 2021. Nutrient-rich submarine groundwater discharge fuels the largest green tide in the world. Science of the Total Environment, 770: 144845, doi: https://doi.org/10.1016/j.scitotenv.2020.144845

    Article  Google Scholar 

  68. Zhang Yan, Santos I R, Li Hailong, et al. 2020. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales. Geochimica et Cosmochimica Acta, 290: 201–215, doi: https://doi.org/10.1016/j.gca.2020.08.026

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanling Lao.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41906150; the Natural Science Foundation of Guangxi under contract No. 2018GXNSFBA281051; the Science and Technology Plan Projects of Guangxi Province under contract Nos Gui Science AD19245147 and Gui Science AB18126098; the Research Fund of Guangxi Education Department under contract No. 2018KY0616; the Research Startup Fund of Beibu Gulf University under contract No. 2018KYQD09.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Su, K., Du, J. et al. Estimating submarine groundwater discharge at a subtropical river estuary along the Beibu Gulf, China. Acta Oceanol. Sin. (2021). https://doi.org/10.1007/s13131-021-1862-7

Download citation

Key words

  • radium isotopes
  • submarine groundwater discharge
  • balance model
  • tidal pumping
  • Dafengjiang River Estuary