Barnier B. 1998. Forcing the ocean. In: Chassignet E P, Verron J, eds. Ocean Modeling and Parameterization. Dordrecht, the Netherlands: Springer, 45–80
Chapter
Google Scholar
Chavez F P, Sevadjian J, Wahl C, et al. 2018. Measurements of pCO2 and pH from an autonomous surface vehicle in a coastal up-welling system. Deep-Sea Research Part II: Topical Studies in Oceanography, 151: 137–146, doi: https://doi.org/10.1016/j.dsr2.2017.01.001
Article
Google Scholar
Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216, doi: https://doi.org/10.1016/j.pocean.2011.01.002
Article
Google Scholar
Daniel T, Manley J, Trenaman N. 2011. The wave glider: enabling a new approach to persistent ocean observation and research. Ocean Dynamics, 61(10): 1509–1520, doi: https://doi.org/10.1007/s10236-011-0408-5
Article
Google Scholar
Dufour C O, Griffies S M, de Souza G F, et al. 2015. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. Journal of Physical Oceanography, 45(12): 3057–3081, doi: https://doi.org/10.1175/JPO-D-14-0240.1
Article
Google Scholar
Fairall C W, Bradley E F, Godfrey J S, et al. 1996. Cool-skin and warmlayer effects on sea surface temperature. Journal of Geophysical Research, 101(C1): 1295–1308, doi: https://doi.org/10.1029/95JC03190
Article
Google Scholar
Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612, doi: https://doi.org/10.1038/ngeo1863
Article
Google Scholar
Hine R, Willcox S, Hine G, et al. 2009. The wave glider: a wave-powered autonomous marine vehicle. In: Proceedings of OCEANS 2009. Biloxi, MS, USA: IEEE
Google Scholar
Hogg A M C, Dewar W K, Berloff P, et al. 2009. The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation. Journal of Climate, 22(15): 4066–4082, doi: https://doi.org/10.1175/2009JCLI2629.1
Article
Google Scholar
Ko S H, Hyeon J W, Lee S, et al. 2018. Observation of surface water temperature and wave height along the coast of Pohang using wave gliders. Journal of Coastal Research, 85: 1211–1215, doi: https://doi.org/10.2112/SI85-243.1
Article
Google Scholar
Kubota M, Iwasaka N, Kizu S, et al. 2002. Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). Journal of Oceanography, 58(1): 213–225, doi: https://doi.org/10.1023/A:1015845321836
Article
Google Scholar
Liu Jiping, Curry J A. 2006. Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000. Geophysical Research Letters, 33(5): L05706, doi: https://doi.org/10.1029/2005GL024809
Article
Google Scholar
Manley J, Willcox S. 2010. The wave glider: a persistent platform for ocean science. In: Proceedings of OCEANS’10 IEEE SYDNEY. Sydney, Australia: IEEE
Google Scholar
Martin A J, Hines A, Bell M J. 2007. Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Quarterly Journal of the Royal Meteorological Society, 133(625): 981–995, doi: https://doi.org/10.1002/qj.74
Article
Google Scholar
Mitarai S, McWilliams J C. 2016. Wave glider observations of surface winds and currents in the core of Typhoon Danas. Geophysical Research Letters, 43(21): 11312–11319
Article
Google Scholar
Pagniello C M L S, Cimino M A, Terrill E. 2019. Mapping fish chorus distributions in southern California using an autonomous wave glider. Frontiers in Marine Science, 6: 526, doi: https://doi.org/10.3389/fmars.2019.00526
Article
Google Scholar
Penna N T, Maqueda M A M, Martin I, et al. 2018. Sea surface height measurement using a GNSS wave glider. Geophysical Research Letters, 45(11): 5609–5616, doi: https://doi.org/10.1029/2018GL077950
Article
Google Scholar
Pinardi N, Stander J, Legler D M, et al. 2019. The joint IOC (of UNESCO) and WMO collaborative effort for Met-Ocean services. Frontier in Marine Science, 6, doi: https://doi.org/10.3389/fmars.2019.00410
Schmidt K M, Swart S, Reason C, et al. 2017. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean. Journal of Atmospheric and Oceanic Technology, 34(12): 2551–2568, doi: https://doi.org/10.1175/JTECH-D-17-0079.1
Article
Google Scholar
Smith N, Kessler W S, Cravatte S, et al. 2019. Tropical pacific observing system. Frontiers in Marine Science, 6: 31, doi: https://doi.org/10.3389/fmars.2019.00031
Article
Google Scholar
Sun Xiujun, Wang Lei, Sang Hongqiang. 2019. Application of wave glider “Black Pearl” to Typhoon Observation in South China Sea. Journal of Unmanned Undersea Systems (in Chinese), 27(5): 562–569
Google Scholar
Sun Bomin, Yu Lisan, Weller R A. 2003. Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic: NWP model analyses versus moored buoy observations. Journal of Climate, 16(4): 679–695, doi: https://doi.org/10.1175/1520-0442(2003)016<0679:COSMAT>2.0.CO;2
Article
Google Scholar
Thomson J, Girton J. 2017. Sustained measurements of Southern Ocean air-sea Coupling from a wave glider autonomous surface vehicle. Oceanography, 30(2): 104–109, doi: https://doi.org/10.5670/oceanog.2017.228
Article
Google Scholar
Ueyama R, Deser C. 2008. A climatology of diurnal and semidiurnal surface wind variations over the tropical Pacific Ocean based on the Tropical Atmosphere Ocean moored buoy array. Journal of Climate, 21(4): 593–607, doi: https://doi.org/10.1175/JCLI1666.1
Article
Google Scholar
van Lancker V, Baeye M. 2015. Wave glider monitoring of sediment transport and dredge plumes in a shallow marine sandbank environment. PLoS ONE, 10(6): e0128948, doi: https://doi.org/10.1371/journal.pone.0128948
Article
Google Scholar
Villareal T A, Wilson C. 2014. A comparison of the Pac-X Trans-Pacific wave glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS). PLoS ONE, 9(3): e92280, doi: https://doi.org/10.1371/journal.pone.0092280
Article
Google Scholar
Wang Dongxiao, Zeng Lili, Li Xixi, et al. 2013. Validation of satellite-derived daily latent heat flux over the South China Sea, compared with observations and five products. Journal of Atmospheric and Oceanic Technology, 30(8): 1820–1832, doi: https://doi.org/10.1175/JTECH-D-12-00153.1
Article
Google Scholar
Waseda T, Mitsudera H, Taguchi B, et al. 2005. Significance of high-frequency wind forcing in modelling the Kuroshio. Journal of Oceanography, 61(3): 539–548, doi: https://doi.org/10.1007/s10872-005-0061-z
Article
Google Scholar
Yu Lisan, Weller R A. 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bulletin of the American Meteorological Society, 88(4): 527–540, doi: https://doi.org/10.1175/BAMS-88-4-527
Article
Google Scholar
Yusup Y, Liu Heping. 2020. Effects of persistent wind speeds on turbulent fluxes in the water-atmosphere interface. Theoretical and Applied Climatology, 140(1–2): 313–325
Article
Google Scholar
Zeng Lili, Wang Dongxiao. 2009. Intraseasonal variability of latent-heat flux in the South China Sea. Theoretical and Applied Climatology, 97(1–2): 53–64, doi: https://doi.org/10.1007/s00704-009-0131-z
Article
Google Scholar
Zhang Yanwu, Rueda C, Kieft B, et al. 2019. Autonomous tracking of an oceanic thermal front by a wave glider. Journal of Field Robotics, 36(5): 940–954, doi: https://doi.org/10.1002/rob.21862
Article
Google Scholar