Skip to main content

Estimating genetic parameters with molecular relatedness and pedigree reconstruction for growth traits in early mixed breeding of juvenile turbot

Abstract

An introduced turbot population was used to establish families and to estimate genetic parameters of the offspring. However, there is a lack of pedigree information, and common environmental effects can be introduced when each full-sib family is raised in a single tank. Therefore, in the genetic evaluation, SSRs (simple sequence repeats) were used to reconstruct the pedigree and to calculate molecular relatedness between individuals, and the early mixed-family culture model was used to remove the impact of the common environmental effects. After 100 d of early mixed culture, twenty SSRs were used to cluster 20 families and to calculate paired molecular relationships (n=880). Additive genetic matrices were constructed using molecular relatedness (MR) and pedigree reconstruction (PR) and were then applied to the same animal model to estimate genetic parameters. Based on PR, the heritabilities for body weight and body length were 0.214±0.124 and 0.117±0.141, and based on MR they were 0.101±0.031 and 0.102±0.034, respectively. Cross validation showed that the accuracies of the estimated breeding values based on MR (body weight and body length of 0.717±0.045 and 0.629±0.141, respectively) were higher than those of PR (body weight and body length of 0.692±0.052 and 0.615±0.060, respectively). The MR method ensure availability of all genotyped selection candidates, thereby improving the accuracy of the breeding value estimation.

This is a preview of subscription content, access via your institution.

References

  1. Bink M C A M, Anderson A D, van de Weg W E, et al. 2008. Comparison of marker-based pairwise relatedness estimators on a pedigreed plant population. Theoretical and Applied Genetics, 117(6): 843–855, doi: https://doi.org/10.1007/s00122-008-0824-1

    Article  Google Scholar 

  2. Blanquer A, Alayse J P, Berrada-Rkhami O, et al. 1992. Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichthyes, Pleuronectoformes, Scophthalmidae) throughout their range in Europe. Journal of Fish Biology, 41(5): 725–736, doi: https://doi.org/10.1111/j.1095-8649.1992.tb02702.x

    Article  Google Scholar 

  3. Blonk R J W, Komen H, Kamstra A, et al. 2010. Estimating breeding values with molecular relatedness and reconstructed pedigrees in natural mating populations of common sole, Solea solea. Genetics, 184(1): 213–219, doi: https://doi.org/10.1534/genetics.109.110536

    Article  Google Scholar 

  4. Cardellino R, Rovira J. 1987. Mejoramiento Genético Animal. Buenos Aires, Argentina: Hemisferio Sur

    Google Scholar 

  5. Falconer D S, Mackay T F C. 1996. Introduction to Quantitative Genetics. 4th ed. Longman, Harlow: Benjamin Cummings

  6. Gall G A E, Bakar Y, Famula T. 1993. Estimating genetic change from selection. Aquaculture, 111(1–4): 75–88, doi: https://doi.org/10.1016/0044-8486(93)90026-U

    Article  Google Scholar 

  7. Gheyas A A, Woolliams J A, Taggart J B, et al. 2009. Heritability estimation of silver carp (Hypophthalmichthys molitrix) harvest traits using microsatellite based parentage assignment. Aquaculture, 294(3–4): 187–193, doi: https://doi.org/10.1016/j.aquaculture.2009.06.013

    Article  Google Scholar 

  8. Gilmour A R, Gogel B J, Cullis B R, et al. 2009. ASReml User Guide Release 3.0. Hemel Hempstead, UK: VSN International Ltd

    Google Scholar 

  9. Gjerde B, Korsvoll S A. 1999. Realized Selection Differentials for Growth Rate and Early Sexual Maturity in Atlantic Salmon. Oostende, Belgium: Aquaculture Europe, 99: 73–74

    Google Scholar 

  10. Guan Jiantao, Wang Weiji, Luan Sheng, et al. 2016. Estimation of genetic parameters for early growth trait of turbot (Scophthalmus maximus L.) using molecular relatedness. Aquaculture Research, 47(7): 2205–2214, doi: https://doi.org/10.1111/are.12673

    Article  Google Scholar 

  11. Hu Yulong, Guan Jiantao, Ma Yu, et al. 2016. An estimation of genetic parameters of growth traits in juvenile turbot (Scophthalmus maximus L.) using parental molecular relatedness. Acta Oceanologica Sinica, 35(2): 126–130, doi: https://doi.org/10.1007/s13131-015-0643-6

    Article  Google Scholar 

  12. Jones O R, Wang Jinliang. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3): 551–555, doi: https://doi.org/10.1111/j.1755-0998.2009.02787.x

    Article  Google Scholar 

  13. Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106, doi: https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  Google Scholar 

  14. Karaket T, Poompuang S. 2012. CERVUS vs. COLONY for successful parentage and sibship determinations in freshwater prawn Macrobrachium rosenbergii de Man. Aquaculture, 324–325: 307–311, doi: https://doi.org/10.1016/j.aquaculture.2011.10.045

    Article  Google Scholar 

  15. Lei Jilin. 2002. Problem and suggestion of introducting species for marine culture. China Fisheries, (2): 63–65

  16. Lei Jilin. 2006. Outlook of the marine fish culture industry in China. Marine Fisheries Research (in Chinese), 27(2): 1–9

    Google Scholar 

  17. Lei Jilin, Liu Xinfu. 1995. A primary study on culture of turbot, Scophthalmus maeoticus L. Modern Fisheries Information (in Chinese), 10(11): 1–3

    Google Scholar 

  18. Lei Jilin, Men Qiang, Wang Yingeng, et al. 2002. Review of “Green House+Deep Well Seawater” industrialized culture pattern of turbot (Scophthalmus maximus). Marine Fisheries Research (in Chinese), 23(4): 1–7

    Google Scholar 

  19. Li Dongyu. 2016. Genetic parameter estimation for growth and meat rate traits of Pacific white shrimp (Litopenaeus vannamei) in low temperature condition by microsatellite markers (in Chinese)[dissertation]. Nanjing: Nanjing Agricultural University

    Google Scholar 

  20. Liu Baosuo, Zhang Tianshi, Kong Jie, et al. 2011. Estimation of genetic parameters for growth and upper thermal tolerance traits in turbot Scophthalmus maximus. Journal of Fisheries of China (in Chinese), 35(11): 1601–1606

    Google Scholar 

  21. Luan Sheng, Kong Jie, Wang Qingyin. 2008. Methods and application of aquatic animal breeding value estimation: a review. Marine Fisheries Research (in Chinese), 29(3): 101–107

    Google Scholar 

  22. Lucas T, Macbeth M, Degnan S M, et al. 2006. Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 259(1–4): 146–152, doi: https://doi.org/10.1016/j.aquaculture.2006.05.039

    Article  Google Scholar 

  23. Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sunderland: Sinauer Associates, Inc: 360–361

    Google Scholar 

  24. Lyu Ding, Wang Weiji, Luan Sheng, et al. 2017. Estimating genetic parameters for growth traits with molecular relatedness in turbot (Scophthalmus maximus, Linnaeus). Aquaculture, 468: 149–155, doi: https://doi.org/10.1016/j.aquaculture.2016.09.049

    Article  Google Scholar 

  25. Ma Aijun, Wang Xinan, Lei Jilin. 2009. Genetic parameterization for turbot Scophthalmus maximus: implication to breeding strategy. Oceanologia et Limnologia Sinica (in Chinese), 40(2): 187–194

    Google Scholar 

  26. Mas-Muñoz J, Blonk R, Schrama J W, et al. 2013. Genotype by environment interaction for growth of sole (Solea solea) reared in an intensive aquaculture system and in a semi-natural environment. Aquaculture, 410–411: 230–235, doi: https://doi.org/10.1016/j.aquaculture.2013.06.012

    Article  Google Scholar 

  27. Men Qiang. 2002. Overview on turbot, Scophthalmus maximus (Linnaeus) introduced to China for ten years. Modern Fisheries Information (in Chinese), 17(9): 14–17

    Google Scholar 

  28. Nguyen T T T, Hayes B J, Ingram B A. 2014. Genetic parameters and response to selection in blue mussel (Mytilus galloprovincialis) using a SNP-based pedigree. Aquaculture, 420–421: 295–301, doi: https://doi.org/10.1016/j.aquaculture.2013.11.021

    Article  Google Scholar 

  29. R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ [2018-01-07]

    Google Scholar 

  30. Ruan Xiaohong, Wang Weiji, Kong Jie, et al. 2010. Genetic linkage mapping of turbot (Scophthalmus maximus L.) using microsatellite markers and its application in QTL analysis. Aquaculture, 308: 89–100, doi: https://doi.org/10.1016/j.aquaculture.2010.08.010

    Article  Google Scholar 

  31. Sambrook J, Fristch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory

    Google Scholar 

  32. Shen Xueyan, Gong Qingli, Lei Jinlin, et al. 2004. Population genetic structure analysis of the imported turbot seedlings Scophthalmus maximus L. using RAPD and microsatellite technique. Oceanologia et Limnologia Sinica (in Chinese), 35(4): 332–341

    Google Scholar 

  33. Shen Xueyan, Kong Jie, Gong Qingli, et al. 2005. The investigation and exploition of turbot (Scophthalmus maximus L.) genetic resources. Marine Fisheries Research (in Chinese), 26(6): 94–100

    Google Scholar 

  34. Vandeputte M, Kocour M, Mauger S, et al. 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture, 235(1–4): 223–236, doi: https://doi.org/10.1016/j.aquaculture.2003.12.019

    Article  Google Scholar 

  35. Wang Gang. 2010. Turbot industry transformation period has arrived. Ocean And Fishery (in Chinese), (1): 14–16, 20

  36. Wang Jinliang. 2007. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetics Research, 89(3): 135–153, doi: https://doi.org/10.1017/S0016672307008798

    Article  Google Scholar 

  37. Wang Jinliang. 2011. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11(1): 141–145, doi: https://doi.org/10.1111/j.1755-0998.2010.02885.x

    Article  Google Scholar 

  38. Wright S. 1922. Coefficients of inbreeding and relationship. The American Naturalist, 56(645): 330–338, doi: https://doi.org/10.1086/279872

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Kong.

Additional information

Foundation item: The Agriculture Variety Improvement Project of Shandong Province under contract No. 2019LZGC013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Wang, W., Hu, Y. et al. Estimating genetic parameters with molecular relatedness and pedigree reconstruction for growth traits in early mixed breeding of juvenile turbot. Acta Oceanol. Sin. (2021). https://doi.org/10.1007/s13131-021-1799-z

Download citation

Key words

  • turbot
  • SSR
  • genetic parameter
  • mixed breeding