Skip to main content
Log in

Sediment source and environment evolution in Taiwan Island during the Eocene-Miocene

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Taiwan Island’s outcropping strata can provide important insights into the sedimentary environment and source development of the southeast China margin. This research is based on the Eocene-Miocene strata of the Tsukeng area in the central Western Foothills, northeast shoreline of Taiwan Island and two sites of the East China Sea Shelf Basin (ECSSB), using petrology and detrital zircon U-Pb age for the analysis. Results show that central and northeast Taiwan Island experienced a transformation from continental to marine facies during the Eocene-Miocene, and the sandstone maturity changed with time. Source analysis shows that sediments from the Eocene-early Oligocene strata mainly originated from near-source Mesozoic rocks, whose zircon age is consistent with the igneous rock in the surrounding area and coastal Cathaysia, showing 120 Ma and 230 Ma peaks in the age spectrum diagram. Since the late Oligocene, peaks of 900 Ma and 1 800 Ma are seen, indicating that deposition of matter from the old block began. The sediments could be a mixture of the surrounding Mesozoic volcanic and fewer pre-Cambrian rocks sourced from the coastal river and sporadic old basement in the ECSSB instead of long-distance transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao Licheng, Shao Lei, Qiao Peijun, et al. 2018. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 1: 120–131, doi: https://doi.org/10.1016/j.epsl.2018.05.039

    Article  Google Scholar 

  • Chen Chenghong, Lee C, Lin Jianwei, et al. 2019. Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 1: 224–246, doi: https://doi.org/10.1016/j.earscirev.2018.12.015

    Article  Google Scholar 

  • Clark M K, Schoenbohm L M, Royden L H, et al. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006

    Article  Google Scholar 

  • Cui Yuchi, Shao Lei, Qiao Peijun, et al. 2019. Upper Miocene-Pliocene provenance evolution of the central canyon in northwestern South China Sea. Marine Geophysical Research, 40(2): 223–235, doi: https://doi.org/10.1007/s11001-018-9359-2

    Article  Google Scholar 

  • Cukur D, Horozal S, Lee G H, et al. 2011. Structural evolution of the northern East China Sea Shelf Basin interpreted from cross-section restoration. Marine Geophysical Research, 32(3): 363–381, doi: https://doi.org/10.1007/s11001-011-9114-4

    Article  Google Scholar 

  • Deng Kai, Yang Shouye, Bi Lei. 2017a. Reply to comment by Yonghang Xu on “Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland”. Earth-Science Reviews, 1: 235–239, doi: https://doi.org/10.1016/j.earscirev.2017.03.009

    Article  Google Scholar 

  • Deng Kai, Yang Shouye, Li Chao, et al. 2017b. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland. Earth-Science Reviews, 1: 31–47, doi: https://doi.org/10.1016/j.earscirev.2016.10.015

    Article  Google Scholar 

  • Dickinson W R, Suczek C A. 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12): 2164–2182

    Google Scholar 

  • Fan Daidu, Li Congxian, Yokoyama K, et al. 2005. Monazite age spectra in the Late Cenozoic of the Changjiang Delta and its implication on the Changjiang run-through time. Science in China Ser. D Earth Sciences, 48(10): 1718–1727, doi: https://doi.org/10.1360/01YD0447

    Article  Google Scholar 

  • Hall R. 1996. Reconstructing Cenozoic SE Asia. In: Hall R, Blundell D, eds. Tectonic Evolution of Southeast Asia. London: The Geological Society of London, 106(1): 153–184

    Google Scholar 

  • Hu Xiumian, Garzanti E, Moore T, et al. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43(10): 859–862, doi: https://doi.org/10.1130/G36872.1

    Article  Google Scholar 

  • Huang Chi-Yue, Shea K H, Li Qianyu. 2017. A foraminiferal study on Middle Eocene-Oligocene break-up unconformity in northern Taiwan and its correlation with IODP Site U1435 to constrain the onset event of South China Sea opening. Journal of Asian Earth Sciences, 1: 439–465, doi: https://doi.org/10.1016/j.jseaes.2016.09.014

    Article  Google Scholar 

  • Huang Chi-Yue, Wu Weiyu, Chang Chungpai, et al. 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1–2): 31–51, doi: https://doi.org/10.1016/S0040-1951(97)00157-1

    Article  Google Scholar 

  • Huang Chi-Yue, Yen Yi, Zhao Quanhong, et al. 2012. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130–3149, doi: https://doi.org/10.1007/s11434-012-5349-y

    Article  Google Scholar 

  • Huang Chi-Yue, Yuan P B, Lin C W, et al. 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1–2): 1–21, doi: https://doi.org/10.1016/S0040-1951(00)00128-1

    Article  Google Scholar 

  • Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. 2010. Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River. Chinese Science Bulletin, 55(15): 1520–1528, doi: https://doi.org/10.1007/s11434-010-3091-x

    Article  Google Scholar 

  • Jin Bingfu, Lin Xiaotong, Ji Fuwu. 2005. Sediments of upper Pleistocene in core Q43 north of Diaoyu Island in the East China Sea. Marine Geology & Quaternary Geology (in Chinese), 25(1): 25–31

    Google Scholar 

  • Lan Qing, Yan Yi, Huang Chi-Yue, et al. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 1: 376–389, doi: https://doi.org/10.1016/j.gr.2015.07.008

    Article  Google Scholar 

  • Li Bingfu, Jiao Xiangheng, Liu Baohua. 1995. Discuss on seismic reflection features of volcanic rocks, Diaoyudao uplift, East China Sea. Oil Geophysical Prospecting (in Chinese), 30(S2): 150–154

    Google Scholar 

  • Li Guiqun, Li Xuelun. 1995. Geological tectonic characteristics of the outer margin upwarped zone of the East China Sea shelf. Journal of Ocean University of Qingdao (in Chinese), 5(2): 199–205

    Google Scholar 

  • Li Peilian, Hou Hongbin, Ma Huifu. 2000. Tectonics and Petroleum potential of the East China Sea Shelf Rift Basin. Acta Geologica Sinica, 74(3): 651–660

    Google Scholar 

  • Li Wuxian, Li Xianhua, Li Zhengxiang. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136(1): 51–66, doi: https://doi.org/10.1016/j.precamres.2004.09.008

    Article  Google Scholar 

  • Li Xianhua. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293–305, doi: https://doi.org/10.1016/S1367-9120(99)00060-7

    Article  Google Scholar 

  • Li Xianhua, Wei Gangjian, Shao Lei, et al. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth and Planetary Science Letters, 211(3–4): 207–220, doi: https://doi.org/10.1016/S0012-821X(03)00229-2

    Article  Google Scholar 

  • Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction mode. Geology, 35(2): 179–182, doi: https://doi.org/10.1130/G23193A.1

    Article  Google Scholar 

  • Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. 2010. Continental and oceanic crust recycling-induced melt-Peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1–2): 537–571, doi: https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  • Shao Lei, Cao Licheng, Pang Xiong, et al. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255–269, doi: https://doi.org/10.1002/2015GC006113

    Article  Google Scholar 

  • Shao Lei, Cui Yuchi, Stattegger K, et al. 2019. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. GSA Bulletin, 131(3–4): 461–478, doi: https://doi.org/10.1130/B32053.1

    Article  Google Scholar 

  • Shao Lei, Pang Xiong, Qiao Peijun, et al. 2008. Sedimentary Filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River. Acta Sedimentologica Sinica (in Chinese), 26(2): 179–185

    Google Scholar 

  • Shao Lei, You Hongqing, Hao Hujun, et al. 2007. Petrology and depositional environments of Mesozoic strata in the Northeastern South China Sea. Geological Review (in Chinese), 53(2): 164–169

    Google Scholar 

  • Sharp W D, Clague D A. 2006. 50-Ma initiation of Hawaiian-emperor bend records major change in Pacific plate motion. Science, 313(5791): 1281–1284, doi: https://doi.org/10.1126/science.1128489

    Article  Google Scholar 

  • Sun Tao. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China (in Chinese), 25(3): 332–335

    Google Scholar 

  • Suo Yanhui, Li Su, Zhao Shujuan, et al. 2015. Continental margin basins in East Asia: tectonic implications of the Meso-Cenozoic East China Sea pull-apart basins. Geological Journal, 50(2): 139–156, doi: https://doi.org/10.1002/gj.2535

    Article  Google Scholar 

  • Suppe J. 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 1: 21–33

    Google Scholar 

  • Usuki T, Lan C Y, Yui T F, et al. 2009. Early Paleozoic medium-pressure metamorphism in central Vietnam: evidence from SHRIMP U-Pb zircon ages. Geosciences Journal, 13(3): 245–256, doi: https://doi.org/10.1007/s12303-009-0024-2

    Article  Google Scholar 

  • Vermeesch P. 2012. On the Visualisation of detrital age distributions. Chemical Geology, 312–1: 190–194, doi: https://doi.org/10.1016/j.chemgeo.2012.04.021

    Article  Google Scholar 

  • Wan Yusheng, Liu Dunyi, Xu Meihui, et al. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1–2): 166–183, doi: https://doi.org/10.1016/j.gr.2006.10.016

    Article  Google Scholar 

  • Wang Chengshan, Li Xianghui, Hu Xiumian, et al. 2002. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14(2): 114–120, doi: https://doi.org/10.1046/j.1365-3121.2002.00399.x

    Article  Google Scholar 

  • Wang Guochun, Zhu Weilin. 1992. Cenozoic sedimentary environment in East China Sea Basin. Acta Sedimentologica Sinica (in Chinese), 10(2): 100–108

    Google Scholar 

  • Wang Pinxian. 2004. Cenozoic deformation and the history of sea-land interactions in Asia. In: Clift P, Kuhnt W, Wang Pinxian, et al. eds. Continent-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 1–22

    Google Scholar 

  • Wang Qiang, Wyman D A, Li Zhengxiang, et al. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research, 178(1–4): 185–208

  • Wang Wei, Bidgoli T, Yang Xianghua, et al. 2018. Source-to-sink links between East Asia and Taiwan from detrital zircon geochronology of the oligocene Huagang formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673–3688, doi: https://doi.org/10.1029/2018GC007576

    Article  Google Scholar 

  • Wang Yangyang, Fan Daidu. 2013. U-Pb ages and Hf Isotopic composition of crystalline zircons from igneous rocks of the Changjiang drainage basin and their implications for provenance. Marine Geology & Quaternary Geology, 33(5): 97–118

    Article  Google Scholar 

  • Wang Zhangshi, Zhu Weilin, Chen Chunfeng, et al. 2014. Basement lithology and distribution of Lishui-Jiaojiang Cenozoic Sag in East China Sea. Journal of Tongji University (Natural Science) (in Chinese), 42(4): 636–644

    Google Scholar 

  • Wu Jiapeng, Zhang Lan, Wan Lifen, et al. 2017. Provenance analysis of Pinghu Formation in Xihu sag. China Petroleum Exploration (in Chinese), 22(2): 50–57

    Google Scholar 

  • Xu Xisheng, O’Reilly S Y, Griffin W L, et al. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1–2): 51–78, doi: https://doi.org/10.1016/j.precamres.2007.04.010

    Article  Google Scholar 

  • Xu Yonghang, Sun Qinqin, Yi Liang, et al. 2014. Detrital zircons U-Pb age and Hf isotope from the western side of the Taiwan Strait: Implications for sediment provenance and crustal evolution of the northeast Cathaysia block. Terrestrial, Atmospheric and Oceanic Sciences, 25(4): 505–535, doi: https://doi.org/10.3319/TAO.2014.02.18.01(TT)

    Article  Google Scholar 

  • Yang Xianghua, Li Anchun, Qin Yunshan, et al. 2006. U-P dating of zircons from Cenozoic sandstone: constrain on the geodynamic setting of East China Sea Shelf Basin. Marine Geology & Quaternary Geology (in Chinese), 26(3): 75–86

    Google Scholar 

  • Yang Zhenning, Yang Kunguang, Polat A, et al. 2018. Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area. Precambrian Research, 1: 248–270, doi: https://doi.org/10.1016/j.precamres.2017.05.011

    Article  Google Scholar 

  • Yao Jinlong, Shu Liangshu, Santosh M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research, 20(2–3): 553–567, doi: https://doi.org/10.1016/j.gr.2011.01.005

    Article  Google Scholar 

  • Ye Jiaren, Qing Hairuo, Bend S L, et al. 2007. Petroleum systems in the offshore Xihu Basin on the continental shelf of the East China Sea. AAPG Bulletin, 91(8): 1167–1188, doi: https://doi.org/10.1306/02220705158

    Article  Google Scholar 

  • Yuan Shengyuan, Li Chang’an, Zhang Yufeng, et al. 2012. Trace element characteristics of sediments in Jianghan Basin: Implications for expansion of the upper reaches of the Yangtze River. Geology in China (in Chinese), 39(4): 1042–1048

    Google Scholar 

  • Yuan Xuecheng. 1996. Atlas of Geophysics in China (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zhang Guohua, Li Sanzhong, Suo Yanhui, et al. 2016. Cenozoic positive inversion tectonics and its migration in the East China Sea Shelf Basin. Geological Journal, 51(S1): 176–187, doi: https://doi.org/10.1002/gj.2809

    Article  Google Scholar 

  • Zhang Hao, Shao Lei, Zhang Gongcheng, et al. 2020. The response of Cenozoic sedimentary evolution coupled with the formation of the South China Sea. Geological Journal, 55(10): 6989–7010, doi: https://doi.org/10.1002/gj.3856

    Article  Google Scholar 

  • Zhang Jingyu, Lu Yongchao, Krijgsman W, et al. 2018. Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin. Marine and Petroleum Geology, 1: 733–745, doi: https://doi.org/10.1016/j.marpetgeo.2018.09.014

    Article  Google Scholar 

  • Zhang Xinchang, Huang Chi-Yue, Wang Yuejun, et al. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634–651, doi: https://doi.org/10.1002/2016TC004357

    Article  Google Scholar 

  • Zhang Xinchang, Yan Yi, Huang Chi-Yue, et al. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 1: 26–39, doi: https://doi.org/10.1016/j.jseaes.2014.01.021

    Article  Google Scholar 

  • Zheng Hongbo, Clift P D, Wang Ping, et al. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556–7561, doi: https://doi.org/10.1073/pnas.1216241110

    Article  Google Scholar 

  • Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3–4): 269–287, doi: https://doi.org/10.1016/S0040-1951(00)00120-7

    Article  Google Scholar 

  • Zhou Xinmin, Sun Tao, Shen Weizhou, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26–33, doi: https://doi.org/10.18814/epiiugs/2006/v29i1/004

    Article  Google Scholar 

  • Zhou Zuyi, Jiang Jianyi, Liao Zongting, et al. 2001. Basin inversion in Xihu depression, East China Sea. Gondwana Research, 4(4): 844–845, doi: https://doi.org/10.1016/S1342-937X(05)70627-4

    Article  Google Scholar 

  • Zhu Weilin, Zhong Kai, Fu Xiaowei, et al. 2019. The formation and evolution of the East China Sea Shelf Basin: a new view. Earth-Science Reviews, 1: 89–111, doi: https://doi.org/10.1016/j.earscirev.2018.12.009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Zhu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 42076066, 41874076 and 92055203; the National Key Research and Development Program of China under contract No. 2018YFE0202400; the National Science and Technology Major Project under contract No. 2016ZX05026004-002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Zhu, W., Qiao, P. et al. Sediment source and environment evolution in Taiwan Island during the Eocene-Miocene. Acta Oceanol. Sin. 40, 114–122 (2021). https://doi.org/10.1007/s13131-021-1756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1756-8

Key words

Navigation