Skip to main content
Log in

Early diagenesis of redox-sensitive trace metals in the northern Okinawa Trough

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The early diagenesis processes of several redox-sensitive trace metals (RSMs) (Mo, U and V) were studied with several short sediment cores (~25 cm) collected in the northern Okinawa Trough (OT). Pore water vertical profiles indicated that the sedimentary environments in all cores were between oxic and suboxic, not yet reaching anoxic sulfidic conditions. The recycling process of Mo in sediments was clearly associated with Mn and yielded little authigenic accumulation, while U showed a downcore increase in sediment and its authigenic mass accumulation rate (MAR) was estimated to be ≈23% of the Changjiang (Yangtze) and Huanghe (Yellow) riverine flux. Benthic diffusive fluxes and MAR were calculated and the comparison of them showed that U and V fluxes matched relatively well both in direction and in magnitude, implying that diffusion processes at the sediment-water interface is the dominant process controlling the remobilization or burial of V and U in northern OT. This work provided a systematic study (both in pore water and solid phase) on the RSMs geochemical behaviors during early diagenesis process, yielding a quantitative assessment of the remobilization or burial fluxes of the RSMs in northern OT. Such studies are in general lacking in the coastal margin of Northwest Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson J M, Helz G R, Miller C V. 2001. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay. Geochimica et Cosmochimica Acta, 65(2): 237–252, doi: 10.1016/S0016-7037(00)00539-1

    Article  Google Scholar 

  • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleocean-ographic systems based on molybdenum-uranium covariation. Chemical Geology, 268(3-4): 211–225, doi: 10.1016/j.chemgeo.2009.09.001

    Article  Google Scholar 

  • Anderson R F, Lehuray A P, Fleisher M Q, et al. 1989. Uranium deposition in saanich inlet sediments, vancouver island. Geochimica et Cosmochimica Acta, 53(9): 2205–2213, doi: 10.1016/0016-7037(89)90344-X

    Article  Google Scholar 

  • Andres M, Wimbush M, Park J H, et al. 2008. Observations of Kuroshio flow variations in the East China Sea. Journal of Geophysical Research: Oceans, 113(C5): C05013

    Article  Google Scholar 

  • Barnes C E, Cochran J K. 1990. Uranium removal in oceanic sedi-ments and the oceanic U balance. Earth and Planetary Science Letters, 97(1-2): 94–101, doi: 10.1016/0012-821X(90)90101-3

    Article  Google Scholar 

  • Beck M, Dellwig O, Schnetger B, et al. 2008. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochimica et Cosmochimica Acta, 72(12): 2822–2840, doi: 10.1016/j.gca.2008.04.013

    Article  Google Scholar 

  • Berner R A. 1980. Early Diagenesis: A Theoretical Approach. Princeton: Princeton University Press

    Google Scholar 

  • Böning P, Brumsack H J, Böttcher M E, et al. 2004. Geochemistry of peruvian near-surface sediments. Geochimica et Cosmochimica Acta, 68(21): 4429–4451, doi: 10.1016/j.gca.2004.04.027

    Article  Google Scholar 

  • Breit G N, Wanty R B. 1991. Vanadium accumulation in carbon-aceous rocks: a review of geochemical controls during deposition and diagenesis. Chemical Geology, 91(2): 83–97, doi: 10.1016/0009-2541(91)90083-4

    Article  Google Scholar 

  • Brumsack H J. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4): 344–361, doi: 10.1016/j.palaeo.2005.05.011

    Article  Google Scholar 

  • Brumsack H J, Gieskes J M. 1983. Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Marine Chemistry, 14(1): 89–106, doi: 10.1016/0304-4203(83)90072-5

    Article  Google Scholar 

  • Calvert S E, Pedersen T F. 1993. Geochemistry of recent oxic and an-oxic marine sediments: implications for the geological record. Marine Geology, 113(1-2): 67–88, doi: 10.1016/0025-3227 (93)90150-T

    Article  Google Scholar 

  • Canfield D E, Thamdrup B, Hansen J W. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57(16): 3867–3883, doi: 10.1016/0016-7037(93)90340-3

    Article  Google Scholar 

  • Chang Fengming. 2004. Paleoenvironment evolution in the Okinawa trough during the late Pleistocene and Holocene (in Chinese) [dissertation]. Qingdao: Institute of Oceanology, Chinese Academy of Science

    Google Scholar 

  • Chen H Y, Huh C A, Chang Ningyu, et al. 2000. Sources and distribution of heavy metals in East China Sea surface sediments. Chemistry and Ecology, 17(3): 181–194, doi: 10.1080/02757540008037672

    Article  Google Scholar 

  • Cheshire M V, Berrow M L, Goodman B A, et al. 1977. Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochimica et Cosmochimica Acta, 41(8): 1131–1138, doi: 10.1016/0016-7037(77)90108-9

    Article  Google Scholar 

  • Chester R. 1990. Marine Geochemistry. London: Unwin Hyman Ltd, 698

    Book  Google Scholar 

  • Chung Y, Chang W C. 1995. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough. Continental Shelf Research, 15(2-3): 149–164, doi: 10.1016/0278-4343(94)E0023-F

    Article  Google Scholar 

  • Cline J D. 1969. Spectrophotometric determination of hydrogen sulf-ide in natural waters. Limnology and Oceanography, 14(3): 454–458, doi: 10.4319/10.1969.14.3.0454

    Article  Google Scholar 

  • Cochran J K, Carey A E, Sholkovitz E R, et al. 1986. The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochimica et Cosmochimica Acta, 50(5): 663–680, doi: 10.1016/0016-7037(86)90344-3

    Article  Google Scholar 

  • Crusius J, Calvert S, Pedersen T, et al. 1996. Rhenium and molyb-denum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145(1-4): 65–78, doi: 10.1016/S0012-821X (96)00204-X

    Article  Google Scholar 

  • DeMaster D J, McKee B A, Nittrouer C A, et al. 1985. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 4(1-2): 143–158, doi: 10.1016/0278-4343(85)90026-3

    Article  Google Scholar 

  • Dunk R M, Mills R A, Jenkins W J. 2002. A reevaluation of the oceanic uranium budget for the Holocene. Chemical Geology, 190(1-4): 45–67, doi: 10.1016/S0009-2541(02)00110-9

    Article  Google Scholar 

  • Elbaz-Poulichet F, Seidel J L, Jézéquel D, et al. 2005. Sedimentary record of redox-sensitive elements (U, Mn, Mo) in a transitory anoxic basin (the Thau lagoon, France). Marine Chemistry, 95(3-4): 271–281, doi: 10.1016/j.marchem.2004.10.001

    Article  Google Scholar 

  • Emerson S R, Huested S S. 1991. Ocean anoxia and the concentra-tions of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177–196, doi: 10.1016/0304-4203(91)90002-E

    Article  Google Scholar 

  • Erickson B E, Helz G R. 2000. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7): 1149–1158, doi: 10.1016/S0016-7037(99)00423-8

    Article  Google Scholar 

  • Froelich P N, Klinkhammer G P, Bender M L, et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075–1090, doi: 10.1016/0016-7037(79)90095-4

    Article  Google Scholar 

  • Gao Shan, Luo Tingchuan, Zhang Benren, et al. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975, doi: 10.1016/S0016-7037(98)00121-5

    Article  Google Scholar 

  • Gao Xuelu, Song Jinming. 2006. Main geochemical characteristics and key biogeochemical carbon processes in the East China Sea. Journal of Coastal Research, 22(6): 1330–1339

    Article  Google Scholar 

  • He Jianhua, Yu Wen, Lin Wuhui, et al. 2015. Particulate organic carbon export fluxes on Chukchi Shelf, western Arctic Ocean, derived from 210Po/210Pb disequilibrium. Chinese Journal of Oceanology and Limnology, 33(3): 741–747, doi: 10.1007/s00343-015-3357-x

    Article  Google Scholar 

  • Heggie D, Kahn D, Fischer K. 1986. Trace metals in metalliferous sediments, MANOP site M: interfacial pore water profiles. Earth and Planetary Science Letters, 80(1-2): 106–116, doi: 10.1016/ 0012-821X(86)90023-3

    Article  Google Scholar 

  • Helz G R, Miller C V, Charnock J M, et al. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: exafs evidence. Geochimica et Cosmochimica Acta, 60(19): 3631–3642, doi: 10.1016/0016-7037(96)00195-0

    Article  Google Scholar 

  • Homoky W B, Hembury D J, Hepburn L E, et al. 2011. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochimica et Cosmochimica Acta, 75(17): 5032–5048, doi: 10.1016/j.gca.2011.06.019

    Article  Google Scholar 

  • Honda M C, Kusakabe M, Nakabayashi S, et al. 2000. Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of 14C-poor sediment from the continental slope. Marine Chemistry, 68(3): 231–247, doi: 10.1016/S0304-4203(99)00080-8

    Article  Google Scholar 

  • Huh C A, Su C C. 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239,240Pu. Marine Geology, 160(1-2): 183–196, doi: 10.1016/S0025-3227(99)00020-1

    Article  Google Scholar 

  • Iseki K, Okamura K, Kiyomoto Y. 2003. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(2): 457–573, doi: 10.1016/S0967-0645(02)00468-X

    Article  Google Scholar 

  • Jiang Fuqing, Li Anchun, Li Tiegang. 2011. Sediment pathway of the East China Sea inferred from an R-mode factor analysis of surface sediments in the Okinawa Trough. Quaternary International, 230(1-2): 13–20, doi: 10.1016/j.quaint.2009.11.025

    Article  Google Scholar 

  • Jørgensen B B, Revsbech N P. 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography, 30(1): 111–122, doi: 10.4319/10.1985.30.1.0111

    Article  Google Scholar 

  • Kalnejais L H, Martin W R, Signell R P, et al. 2007. Role of sediment resuspension in the remobilization of particulatephase metals from coastal sediments. Environmental Science & Technology, 41(7): 2282–2288

    Article  Google Scholar 

  • Kao S J, Lin F J, Liu K K. 2003. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7): 1203–1217, doi: 10.1016/S0967-0645(03)00018-3

    Article  Google Scholar 

  • Klinkhammer G P, Palmer M R. 1991. Uranium in the oceans: where it goes and why. Geochimica et Cosmochimica Acta, 55(7): 1799–1806, doi: 10.1016/0016-7037(91)90024-Y

    Article  Google Scholar 

  • Kuzyk Z Z A, Gobeil C, Goñi M A, et al. 2017. Early diagenesis and trace element accumulation in North American Arctic margin sediments. Geochimica et Cosmochimica Acta, 203: 175–200, doi: 10.1016/j.gca.2016.12.015

    Article  Google Scholar 

  • Kuzyk Z Z A, Macdonald R W, Stern G A, et al. 2011. Inferences about the modern organic carbon cycle from diagenesis of redox-sensitive elements in Hudson Bay. Journal of Marine Systems, 88(3): 451–462, doi: 10.1016/j.jmarsys.2010.11.001

    Article  Google Scholar 

  • Lee C S, Shor G G Jr, Bibee L D J, et al. 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology, 35(1-3): 219–241, doi: 10.1016/0025-3227(80)90032-8

    Article  Google Scholar 

  • Legeleux F, Reyss J L, Bonte P, et al. 1994. Concomitant enrichments of uranium, molybdenum and arsenic in suboxic continental margin sediments. Oceanologica Acta, 17(4): 417–429

    Google Scholar 

  • Lewan M D, Maynard J B. 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46(12): 2547–2560, doi: 10.1016/0016-7037(82)90377-5

    Article  Google Scholar 

  • Li Li, Liu Jihua, Wang Xiaojing, et al. 2015. Dissolved trace metal distributions and Cu speciation in the southern Bohai Sea, China. Marine Chemistry, 172: 34–45, doi: 10.1016/j.marchem. 2015.03.002

    Article  Google Scholar 

  • Li Y H, Gregory S. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38(5): 703–714, doi: 10.1016/0016-7037(74)90145-8

    Article  Google Scholar 

  • Masqué P, Sanchez-Cabeza J A, Bruach J M, et al. 2002. Balance and residence times of 210Pb and 210Po in surface waters of the northwestern Mediterranean Sea. Continental Shelf Research, 22(15): 2127–2146, doi: 10.1016/S0278-4343(02)00074-2

    Article  Google Scholar 

  • McManus J, Berelson W M, Klinkhammer G P, et al. 2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69(1): 95–108, doi: 10.1016/j.gca.2004.06.023

    Article  Google Scholar 

  • McManus J, Berelson W M, Severmann S, et al. 2006. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochimica et Cosmochimica Acta, 70(18): 4643–4662, doi: 10.1016/j.gca.2006.06.1564

    Article  Google Scholar 

  • Middelburg J J, De Lange G J, Van Der Weijden C H. 1987. Manganese solubility control in marine pore waters. Geochimica et Cosmochimica Acta, 51(3): 759–763, doi: 10.1016/0016-7037(87)90086-X

    Article  Google Scholar 

  • Middelburg J J, Levin L A. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6(7): 1273–1293, doi: 10.5194/bg-6-1273-2009

    Article  Google Scholar 

  • Morford J L, Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735–1750, doi: 10.1016/S0016-7037(99)00126-X

    Article  Google Scholar 

  • Morford J L, Emerson S R, Breckel E J, et al. 2005. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 69(21): 5021–5032, doi: 10.1016/j.gca.2005.05.015

    Article  Google Scholar 

  • Morford J L, Martin W R, Carney C M. 2009a. Uranium diagenesis in sediments underlying bottom waters with high oxygen content. Geochimica et Cosmochimica Acta, 73(10): 2920–2937, doi: 10.1016/j.gca.2009.02.014

    Article  Google Scholar 

  • Morford J L, Martin W R, François R, et al. 2009b. A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations. Geochimica et Cosmochimica Acta, 73(10): 2938–2960, doi: 10.1016/j.gca. 2009.02.029

    Article  Google Scholar 

  • Morford J L, Martin W R, Kalnejais L H, et al. 2007. Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston harbor, Massachusetts, USA. Geochimica et Cosmochimica Acta, 71(4): 895–917, doi: 10.1016/j.gca.2006.10.016

    Article  Google Scholar 

  • Myers C R, Nealson K H. 1988. Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochimica et Cosmochimica Acta, 52(11): 2727–2732, doi: 10.1016/0016-7037(88)90041-5

    Article  Google Scholar 

  • Nameroff T J, Balistrieri L S, Murray J W. 2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochimica et Cosmochimica Acta, 66(7): 1139–1158, doi: 10.1016/S0016-7037(01)00843-2

    Article  Google Scholar 

  • Narita H, Harada K, Tsunogai S. 1990. Lateral transport of sediment particles in the Okinawa Trough determined by natural radio-nuclides. Geochemical Journal, 24(4): 207–216, doi: 10.2343/geochemj.24.207

    Article  Google Scholar 

  • Nozaki Y. 1986. 226Ra-222Rn-210Pb systematics in seawater near the bottom of the ocean. Earth and Planetary Science Letters, 80(1-2): 36–40, doi: 10.1016/0012-821X(86)90017-8

    Article  Google Scholar 

  • Nozaki Y, Tsubota H, Kasemsupaya V, et al. 1991. Residence times of surface water and particle-reactive 210Pb and 210Po in the East China and Yellow seas. Geochimica et Cosmochimica Acta, 55(5): 1265–1272, doi: 10.1016/0016-7037(91)90305-O

    Article  Google Scholar 

  • Oguri K, Matsumoto E, Yamada M, et al. 2003. Sediment accumulation rates and budgets of depositing particles of the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(2): 513–528, doi: 10.1016/S0967-0645(02)00465-4

    Article  Google Scholar 

  • Olson L, Quinn K A, Siebecker M G, et al. 2017. Trace metal diagenes-is in sulfidic sediments: insights from chesapeake bay. Chemical Geology, 452: 47–59, doi: 10.1016/j.chemgeo.2017.01.018

    Article  Google Scholar 

  • Palmer M R, Edmond J M. 1993. Uranium in river water. Geochimica et Cosmochimica Acta, 57(20): 4947–4955, doi: 10.1016/0016-7037(93)90131-F

    Article  Google Scholar 

  • Qin Yunshan, Zhao Yiyang, Chen Lirong, et al. 1987. Geology of the East China Sea (in Chinese). Beijing: Science Press

    Google Scholar 

  • Rajendran A, Kumar M D, Bakker J F. 1992. Control of manganese and iron in Skagerrak sediments (northeastern North Sea). Chemical Geology, 98(1-2): 111–129, doi: 10.1016/0009-2541(92)90094-L

    Article  Google Scholar 

  • Sani R K, Peyton B M, Amonette J E, et al. 2004. Reduction of urani-um(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr)oxides. Geochimica et Cosmochimica Acta, 68(12): 2639–2648, doi: 10.1016/j.gca.2004.01.005

    Article  Google Scholar 

  • Santschi P H, Anderson R F, Fleisher M Q, et al. 1991. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes. Journal of Geophysical Research: Oceans, 96(C6): 10641–10657, doi: 10.1029/91JC00488

    Article  Google Scholar 

  • Santschi P, Höhener P, Benoit G, et al. 1990. Chemical processes at the sediment-water interface. Marine Chemistry, 30: 269–315, doi: 10.1016/0304-4203(90)90076-O

    Article  Google Scholar 

  • Scholz F, Hensen C, Noffke A, et al. 2011. Early diagenesis of redoxsensitive trace metals in the peru upwelling area—response to ENSO-related oxygen fluctuations in the water column. Geochimica et Cosmochimica Acta, 75(22): 7257–7276, doi: 10.1016/j.gca.2011.08.007

    Article  Google Scholar 

  • Senko J M, Mohamed Y, Dewers T A, et al. 2005. Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation. Environmental Science & Technology, 39(8): 2529–2536

    Article  Google Scholar 

  • Shaw T J, Gieskes J M, Jahnke R A. 1990. Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54(5): 1233–1246, doi: 10.1016/0016-7037(90)90149-F

    Article  Google Scholar 

  • Sibuet J C, Letouzey J, Barbier F, et al. 1987. Back arc extension in the okinawa trough. Journal of Geophysical Research: Solid Earth, 92(B13): 14041–14063, doi: 10.1029/JB092iB13p14041

    Article  Google Scholar 

  • Sohrin Y, Matsui M, Nakayama E. 1999. Contrasting behavior of tungsten and molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea. Geochimica et Cosmochimica Acta, 63(19-20): 3457–3466, doi: 10.1016/S0016-7037(99)00273-2

    Article  Google Scholar 

  • Sundby B, Martinez P, Gobeil C. 2004. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochimica et Cosmochimica Acta, 68(11): 2485–2493, doi: 10.1016/j.gca.2003.08.011

    Article  Google Scholar 

  • Thomson J, Higgs N C, Croudace I W, et al. 1993. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochimica et Cosmochimica Acta, 57(3): 579–595, doi: 10.1016/0016-7037(93)90369-8

    Article  Google Scholar 

  • Thorpe S A, White M. 1988. A deep intermediate nepheloid layer. Deep Sea Research Part A. Oceanographic Research Papers, 35(9): 1665–1671, doi: 10.1016/0198-0149(88)90109-4

    Article  Google Scholar 

  • Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2): 12–32, doi: 10.1016/j.chemgeo.2006.02.012

    Article  Google Scholar 

  • Vorlicek T P, Kahn M D, Kasuya Y, et al. 2004. Capture of molyb-denum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides. Geochimica et Cosmochimica Acta, 68(3): 547–556, doi: 10.1016/S0016-7037(03)00444-7

    Article  Google Scholar 

  • Wanty R B, Goldhaber M B. 1992. Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochimica et Cosmochimica Acta, 56(4): 1471–1483, doi: 10.1016/0016-7037(92)90217-7

    Article  Google Scholar 

  • Warnken K W, Gill G A, Dellapenna T M, et al. 2003. The effects of shrimp trawling on sediment oxygen consumption and the fluxes of trace metals and nutrients from estuarine sediments. Estuarine, Coastal & Shelf Science, 57(1-2): 25–42

    Article  Google Scholar 

  • Wehrli B, Stumm W. 1989. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochimica et Cosmochimica Acta, 53(1): 69–77, doi: 10.1016/0016-7037(89)90273-1

    Article  Google Scholar 

  • Yamada M, Wang Zhongliang, Kato Y. 2006. Precipitation of authigenic uranium in suboxic continental margin sediments from the Okinawa Trough. Estuarine, Coastal and Shelf Science, 66(3-4): 570–579, doi: 10.1016/j.ecss.2005.11.002

    Article  Google Scholar 

  • Zheng Yan, Anderson R F, Van Geen A, et al. 2000. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165–4178, doi: 10.1016/S0016-7037(00)00495-6

    Article  Google Scholar 

  • Zheng Yan, Anderson R F, Van Geen A, et al. 2002. Remobilization of authigenic uranium in marine sediments by bioturbation. Geochimica et Cosmochimica Acta, 66(10): 1759–1772, doi: 10.1016/S0016-7037(01)00886-9

    Article  Google Scholar 

  • Zou Jianjun, Shi Xuefa, Li Naisheng, et al. 2010. Early diagenetic processes of redox sensitive elements in Yangtze Estuary. Earth Science—Journal of China University of Geosciences (in Chinese), 35(1): 31–42, doi: 10.3799/dqkx.2010.004

    Article  Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of the R/V Kexue for their help collecting samples at sea. We also thank all the colleagues and students who have helped at sea or in the laboratory to make this work possible, especially Yanguang Dou and Baoju Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, L., Liu, J. et al. Early diagenesis of redox-sensitive trace metals in the northern Okinawa Trough. Acta Oceanol. Sin. 38, 14–25 (2019). https://doi.org/10.1007/s13131-019-1512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1512-5

Keywords

Navigation