Skip to main content

Advertisement

Log in

Physiological performance of three calcifying green macroalgae Halimeda species in response to altered seawater temperatures

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The effects of seawater temperature on the physiological performance of three Halimeda species were studied for a period of 28 d. Five treatments were established for Halimeda cylindracea, Halimeda opuntia and Halimeda lacunalis, in triplicate aquaria representing a factorial temperature with 24°C, 28°C, 32°C, 34°C and 36°C, respectively. The average Fv/Fm of these species ranged from 0.732 to 0.756 between 24°C and 32°C but declined sharply between 34°C (0.457±0.035) and 36°C (0.122±0.014). Calcification was highest at 28°C, with net calcification rates (Gnet) of (20.082±2.482) mg/(g•d), (12.825±1.623) mg/(g•d) and (6.411±1.029) mg/(g•d) for H. cylindracea, H. opuntia and H. lacunalis, respectively. Between 24°C and 32°C, the specific growth rate (SGR) of H. lacunalis (0.079%–0.110% d–1) was lower than that of H. cylindracea (0.652%–1.644% d–1) and H. opuntia (0.360%–1.527% d–1). Three Halimeda species gradually bleached at 36°C during the study period. Malondialdehyde (MDA) and proline levels in tissues of the three Halimeda were higher in 34–36°C than those in 24–32°C. The results indicate that seawater temperature with range of 24–32°C could benefit the growth and calcification of these Halimeda species, however, extreme temperatures above 34°C have negative impacts. The measured physiological parameters also revealed that H. cylindracea and H. opuntia displayed broader temperature tolerance than H. lacunalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agegian C R. 1985. The biogeochemical ecology of Porolithon gardineri (Foslie). Honolulu: University of Hawaii, 178

    Google Scholar 

  • Anderson B C. 2006. Response of tropical marine macroalgae to thermal stress [dissertation]. Boca Raton, FL: Florida Atlantic University

    Google Scholar 

  • Beach K, Walters L, Vroom P, et al. 2003. Variability in the ecophysiology of Halimeda spp. (Chlorophyta, Bryopsidales) on Conch Reef, Florida Keys, USA. Journal of Phycology, 39(4): 633–643, doi: 10.1046/j.1529-8817.2003.02147.x

    Article  Google Scholar 

  • Bertucci A, Moya A, Tambutté S, et al. 2013. Carbonic anhydrases in anthozoan coralsja review. Bioorganic & Medicinal Chemistry, 21(6): 1437–1450

    Article  Google Scholar 

  • Biber P D, Irlandi E A. 2006. Temporal and spatial dynamics of macroalgal communities along an anthropogenic salinity gradient in Biscayne Bay (Florida, USA). Aquatic Botany, 85(1): 65–77, doi: 10.1016/j.aquabot.2006.02.002

    Article  Google Scholar 

  • Campbell J E, Fisch J, Langdon C, et al. 2016. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs, 35(1): 357–368, doi: 10.1007/s00338-015-1377-9

    Article  Google Scholar 

  • Castillo K D, Ries J B, Bruno J F, et al. 2014. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proceedings of the Royal Society B: Biological Sciences, 281(1797): 20141856, doi: 10.1098/rspb.2014.1856

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: projections, commitments and irreversibility. In: Stocker T F, Qin D, Plattner G K, et al., eds. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Deser C, Phillips A S, Alexander M A. 2010. Twentieth century tropical sea surface temperature trends revisited. Geophysical Research Letters, 37(10): L10701

    Article  Google Scholar 

  • Dijoux L, Verbruggen H, Mattio L, et al. 2012. Diversity of Halimeda (Bryopsidales, Chlorophyta) in New Caledonia: a combined morphological and molecular study. Journal of Phycology, 48(6): 1465–1481, doi: 10.1111/jpy.12002

    Article  Google Scholar 

  • Edmunds P J, Brown D, Moriarty V. 2012. Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Global Change Biology, 18(7): 2173–2183, doi: 10.1111/j.1365-2486.2012.02695.x

    Article  Google Scholar 

  • Famà P, Wysor B, Kooistra W H C F, et al. 2002. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. Journal of Phycology, 38(5): 1040–1050, doi: 10.1046/j.1529-8817.2002.t01-1-01237.x

    Article  Google Scholar 

  • Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98

    Google Scholar 

  • Hensley N M, Elmasri O L, Slaughter E I, et al. 2013. Two species of Halimeda, a calcifying genus of tropical macroalgae, are robust to epiphytism by cyanobacteria. Aquatic Ecology, 47(4): 433–440, doi: 10.1007/s10452-013-9456-x

    Article  Google Scholar 

  • Hillis-Colinvaux L. 1980. Ecology and taxonomy of Halimeda: primary producer of coral reefs. Advances in Marine Biology, 17: 1–327, doi: 10.1016/S0065-2881(08)60303-X

    Article  Google Scholar 

  • Hodges D M, DeLong J M, Forney C F, et al. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4): 604–611, doi: 10.1007/s004250050524

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318(5857): 1737–1742, doi: 10.1126/science.1152509

    Article  Google Scholar 

  • Hofmann L C, Bischof K, Baggini C, et al. 2015. CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia, 177(4): 1157–1169, doi: 10.1007/s00442-015-3242-5

    Article  Google Scholar 

  • Hofmann L C, Heiden J, Bischof K, et al. 2014. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta, 239(1): 231–242, doi: 10.1007/s00425-013-1982-1

    Article  Google Scholar 

  • Hughes T P, Baird A H, Bellwood D R, et al. 2003. Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635): 929–933, doi: 10.1126/science.1085046

    Article  Google Scholar 

  • Hurd C L, Hepburn C D, Currie K I, et al. 2009. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology, 45(6): 1236–1251, doi: 10.1111/j.1529-8817.2009.00768.x

    Article  Google Scholar 

  • Jokiel P L, Maragos J E, Franzisket L. 1978. Coral growth: buoyant weight technique. In: Stoddart D R, Johannes R E, eds. Coral Reefs: Research Methods. Paris: UNESCO, 529–541

    Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111–120, doi: 10.1007/BF01731581

    Article  Google Scholar 

  • Kleypas J A, Feely R A, Fabry V J, et al. 2006. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. St. Petersburg, FL: NSF, NOAA, U.S. Geological Survey

    Google Scholar 

  • Koch M, Bowes G, Ross C, et al. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19(1): 103–132, doi: 10.1111/j.1365-2486.2012.02791.x

    Article  Google Scholar 

  • Kojima R, Hanyuda T, Kawai H. 2015. Taxonomic re-examination of Japanese Halimeda species using genetic markers, and proposal of a new species Halimeda ryukyuensis (Bryopsidales, Chlorophyta). Phycological Research, 63(3): 178–188, doi: 10.1111/pre.12095

    Article  Google Scholar 

  • Langdon C, Gattuso J P, Andersson A. 2010. Measurements of calcification and dissolution of benthic organisms and communities. In: Riebesell U, Fabry V J, Hansson L, et al., eds. Guide to Best Practices for Ocean Acidification Research and Data Reporting. Luxembourg: European Union, 213–232

    Google Scholar 

  • Lee T C, Hsu B D. 2009. Disintegration of the cells of siphonous green alga Codium edule (Bryopsidales, Chlorophyta) under mild heat stress. Journal of Phycology, 45(2): 348–356, doi: 10.1111/j.1529-8817.2009.00656.x

    Article  Google Scholar 

  • Lis J T. 1980. Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods in Enzymology, 65: 347–353, doi: 10.1016/S0076-6879(80)65044-7

    Article  Google Scholar 

  • Littler M M, Littler D S, Hanisak M D. 1991. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology, 150(2): 163–182, doi: 10.1016/0022-0981(91)90066-6

    Article  Google Scholar 

  • Lough J M, Barnes D J. 2000. Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245(2): 225–243, doi: 10.1016/S0022-0981(99)00168-9

    Article  Google Scholar 

  • Manzello D P. 2010. Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs, 29(3): 749–758, doi: 10.1007/s00338-010-0623-4

    Article  Google Scholar 

  • Martin S, Castets M D, Clavier J. 2006. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany, 85(2): 121–128, doi: 10.1016/j.aquabot.2006.02.005

    Article  Google Scholar 

  • Martin S, Clavier J, Chauvaud L, et al. 2007. Community metabolism in temperate maerl beds. I. Carbon and carbonate fluxes. Marine Ecology Progress Series, 335: 19–29, doi: 10.3354/meps335019

    Article  Google Scholar 

  • Martin S, Gattuso J P. 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology, 15(8): 2089–2100, doi: 10.1111/j.1365-2486.2009.01874.x

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, et al. 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change, 2(8): 623–627, doi: 10.1038/nclimate1473

    Article  Google Scholar 

  • McKenzie L J, Campbell S J. 2004. Surviving the summer heat: seagrass burns as corals bleach. Seagrass-Watch News, 19: 1

    Google Scholar 

  • Millero F J. 2007. The marine inorganic carbon cycle. Chemical Reviews, 107(2): 308–341, doi: 10.1021/cr0503557

    Article  Google Scholar 

  • Millero F J, Graham T B, Huang Fen, et al. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1–2): 80–94, doi: 10.1016/j.marchem.2005.12.001

    Article  Google Scholar 

  • Morton B, Blackmore G. 2001. South China Sea. Marine Pollution Bulletin, 42(12): 1236–1263, doi: 10.1016/S0025-326X(01)00240-5

    Article  Google Scholar 

  • Muehllehner N, Edmunds P J. 2008. Effects of ocean acidification and increased temperature on skeletal growth of two scleractinian corals, Pocillopora meandrina and Porites rus. In: Proceedings of the 11th International Coral Reef Symposium. Ft. Lauderdale, Florida: ICRS, 57–61

    Google Scholar 

  • Nelson W A. 2009. Calcified macroalgae-critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research, 60(8): 787–801, doi: 10.1071/MF08335

    Article  Google Scholar 

  • Payri C E. 1988. Halimeda contribution to organic and inorganic production in a Tahitian reef system. Coral Reefs, 6(3–4): 251–262, doi: 10.1007/BF00302021

    Article  Google Scholar 

  • Peach K E, Koch M S, Blackwelder P L, et al. 2017. Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs. Journal of Experimental Marine Biology and Ecology, 486: 114–126, doi: 10.1016/j.jembe.2016.09.008

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace D W R. 2006. MS excel program developed for CO2 system calculations. ORNL/CDIAC-105a, Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy

    Google Scholar 

  • Potin P, Floc’h J Y, Augris C, et al. 1990. Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia, 204(1): 263–267

    Article  Google Scholar 

  • Price N N, Hamilton S L, Tootell J S, et al. 2011. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecology Progress Series, 440: 67–78, doi: 10.3354/meps09309

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, et al. 2003. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9(11): 1660–1668, doi: 10.1046/j.1365-2486.2003.00678.x

    Article  Google Scholar 

  • Saunders G W, Kucera H. 2010. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algologie, 31(4): 487–528

    Google Scholar 

  • Shan Dapeng, Huang Jinguang, Yang Yutao, et al. 2007. Cotton Gh-DREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytologist, 176(1): 70–81, doi: 10.1111/j.1469-8137.2007.02160.x

    Article  Google Scholar 

  • Sinutok S, Hill R, Doblin M A, et al. 2011. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnology and Oceanography, 56(4): 1200–1212, doi: 10.4319/lo.2011.56.4.1200

    Article  Google Scholar 

  • Sun Yanguo, Wang Bo, Jin Shanghui, et al. 2013. Ectopic expression of arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One, 8(3): e59924, doi: 10.1371/journal.pone.0059924

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, et al. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8): 1596–1599, doi: 10.1093/molbev/msm092

    Article  Google Scholar 

  • Teichberg M, Fricke A, Bischof K. 2013. Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquatic Botany, 104: 25–33, doi: 10.1016/j.aquabot.2012.09.010

    Article  Google Scholar 

  • Teichberg M, Martinetto P, Fox S E. 2012. Bottom-up versus topdown control of macroalgal blooms. In: Wiencke C, Bischof K, eds. Seaweed Biology. Berlin, Heidelberg: Springer, 449–467

    Chapter  Google Scholar 

  • Thorhaug A. 1976. Tropical macroalgae as pollution indicator organisms. Micronesica, 12(1): 49–68

    Google Scholar 

  • Verbruggen H, De Clerck O, N’Yeurt A D R, et al. 2006. Phylogeny and taxonomy of Halimeda incrassata, including descriptions of H. kanaloana and H. heteromorpha spp. nov. (Bryopsidales, Chlorophyta). European Journal of Phycology, 41: 337–362, doi: 10.1080/09670260600709315

    Article  Google Scholar 

  • Verbruggen H, Littler D S, Littler M M. 2007. Halimeda pygmaea and Halimeda pumila (Bryopsidales, Chlorophyta): two new dwarf species from fore reef slopes in Fiji and the Bahamas. Phycologia, 46(5): 513–520, doi: 10.2216/07-01.1

    Article  Google Scholar 

  • Vogel N, Meyer F W, Wild C, et al. 2015. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Marine Ecology Progress Series, 521: 49–61, doi: 10.3354/meps11088

    Article  Google Scholar 

  • Walters L J, Smith C M, Coyer J A, et al. 2002. Asexual propagation in the coral reef macroalga Halimeda (Chlorophyta, Bryopsidales): production, dispersal and attachment of small fragments. Journal of Experimental Marine Biology and Ecology, 278(1): 47–65, doi: 10.1016/S0022-0981(02)00335-0

    Article  Google Scholar 

  • Wellburn A R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144: 307–313, doi: 10.1016/S0176-1617(11)81192-2

    Article  Google Scholar 

  • Wernberg T, Russell B D, Thomsen M S, et al. 2011. Seaweed communities in retreat from ocean warming. Current Biology, 21(21): 1828–1832, doi: 10.1016/j.cub.2011.09.028

    Article  Google Scholar 

  • Wizemann A, Meyer F W, Hofmann C L, et al. 2015. Ocean acidification alters the calcareous microstructure of the green macroalga Halimeda opuntia. Coral Reefs, 34(3): 941–954, doi: 10.1007/s00338-015-1288-9

    Article  Google Scholar 

  • Wizemann A, Meyer F W, Westphal H. 2014. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs, 33(4): 951–964, doi: 10.1007/s00338-014-1183-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangfang Yang or Lijuan Long.

Additional information

Foundation item: The Guangzhou Science and Technology Project under contract No. 201707010174; the Strategic Priority Research Program of the Chinese Academy Sciences under contract No. XDA13020203; the Ocean Public Welfare Scientific Research Project under contract No. 201305018-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Mo, J., Huang, R. et al. Physiological performance of three calcifying green macroalgae Halimeda species in response to altered seawater temperatures. Acta Oceanol. Sin. 39, 89–100 (2020). https://doi.org/10.1007/s13131-019-1471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1471-3

Key words

Navigation