Skip to main content
Log in

Adsorption kinetics of platinum group elements onto macromolecular organic matter in seawater

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Adsorption kinetics of the interaction between Pt, Pd and Rh (defined here as platinum group elements, PGEs) ions and macromolecular organic compounds (MOCs, >10 kDa), including humic acid, carrageenan and bovine serum albumin, and different cutoff fractions of natural organic matter (>1 kDa and >3 kDa) obtained from seawater using centrifugal ultrafiltration devices were investigated. For a given element, all the adsorption kinetics did not reach equilibrium except the interaction between Pt and >1 kDa cutoff, and between Pd and humic acid. For all the tested MOCs, the adsorption kinetics could be divided into two stages, a rapid adsorption process in the first 8 h and the desorption stage after the first 8 h until the equilibrium. The change trend of partition coefficient (log10Kd) values with experiment time was consistent with that of the kinetic curves. However, in the interaction between PGE ions and natural dissolved organic matter (NDOM), an obvious difference in the change trends of log10Kd and kinetic curves was observed. It indicated that the partition behavior of PGE ions interacting with NDOM in seawater was a combined effect of different organic constituents. The adsorption and log10Kd of PGEs in the >1 kDa NDOM fraction were higher and more stable than those in the >3 kDa NDOM fraction. The results also indicated that the 1–3 kDa NDOM may dominate the interaction between PGEs ions and NDOM. Moreover, no kinetic model could perfectly simulate the adsorption process. It indicated that the colloidal struction and morphology of MOCs or NDOM in seawater might be inhomogeneous. Hence, the interaction between PGE ions and organic matter in seawater was a complicated process and needs further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker A, Spencer R G M. 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment, 333(1–3): 217–232, doi: 10.1016/j.scitotenv.2004.04.013

    Article  Google Scholar 

  • Byrne R H, Yao Wensheng. 2000. Formation of palladium (II) hy-droxychloride complexes and precipitates in sodium chloride solutions and seawater. Geochimica et Cosmochimica Acta, 64(24): 4153–4156, doi: 10.1016/S0016-7037(00)00501-9

    Article  Google Scholar 

  • Clement N, Muresan B, Hedde M, et al. 2015. Assessment of palladium footprint from road traffic in two highway environments. Environmental Science and Pollution Research, 22(24): 20019–20031, doi: 10.1007/s11356-015-5241-9

    Article  Google Scholar 

  • Cobelo-Garcia A, Turner A, Millward G E, et al. 2007. Behaviour of palladium(II), platinum(IV), and rhodium(III) in artificial and natural waters: Influence of reactor surface and geochemistry on metal recovery. Analytica Chimica Acta, 585(2): 202–210, doi: 10.1016/j.aca.2006.12.029

    Article  Google Scholar 

  • Cobelo-Garcia A, Turner A, Millward G E. 2008. Fractionation and reactivity of platinum group elements during estuarine mixing. Environmental Science & Technology, 42(4): 1096–1011

    Article  Google Scholar 

  • Cobelo-Garcia A. 2013. Kinetic effects on the interactions of Rh (III) with humic acids as determined using size-exclusion chromatography (SEC). Environmental Science and Pollution Research, 20(4): 2330–2339, doi: 10.1007/sll356-012-1113-8

    Article  Google Scholar 

  • Colombo C, Oates C J, Monhemius A J, et al. 2008. Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochemistry: Exploration, Environment, Analysis, 8(1): 91–101, doi: 10.1144/1467-7873/07-151

    Google Scholar 

  • Cook S J, Fletcher WK. 1993. Distribution and behaviour of platinum in soils, sediments and waters of the Tulameen ultramafic complex, southern British Columbia, Canada. Journal of Geochemical Exploration, 46(3): 279–308, doi: 10.1016/0375-6742(93) 90026-1

    Article  Google Scholar 

  • Gueguen C, Guo Laodong, Wang Deli, et al. 2006. Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry, 77(2): 139–155, doi: 10.1007/sl0533-005-0806-1

    Article  Google Scholar 

  • Guo Laodong, Santschi P H. 1997. Composition and cycling of colloids in marine environments. Reviews of Geophysics, 35(1): 17–40, doi: 10.1029/96RG03195

    Article  Google Scholar 

  • Guo Laodong, Santschi P H. 2007. Ultrafiltration and its applications to sampling and characterisation of aquatic colloids. In: Wilkinson K J, Lead J R, eds. Environmental Colloids and Particles: Behaviour, Separation and Characterisation. Wilkinson: John Wiley & Sons, 159–221

    Chapter  Google Scholar 

  • Guo Lei, Sun Changmei, Li Guiying, et al. 2009. Thermodynamics and kinetics of Zn(II) adsorption on crosslinked starch phosphates. Journal of Hazardous Materials, 161(1): 510–515, doi: 10.1016/j.jhazmat.2008.04.003

    Article  Google Scholar 

  • He Wei, Chen Meilian, Schlautman M A, et al. 2016. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review. Science of the Total Environment, 551–552: 415–428, doi: 10.1016/j.scitotenv.2016.02.031

    Google Scholar 

  • Honeyman B D, Santschi P H. 1989. A Brownian-pumping model for oceanic trace metal scavenging: Evidence from Th isotopes. Journal of Marine Research, 47(4): 951–992, doi: 10.1357/002224089785076091

    Article  Google Scholar 

  • Ilina S M, Drozdova O Y, Lapitskiy S A, et al. 2014. Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal Lake of a boreal watershed. Organic Geochemistry, 66: 14–24, doi: 10.1016/j.orggeochem.2013.10.008

    Article  Google Scholar 

  • Jin Rencheng, Xu Yanbin, Li Guihua, et al. 2013. Hierarchical chloro-phytum-like Bi2S3 architectures with high electrochemical performance. International Journal of Hydrogen Energy, 38(22): 9137–9144, doi: 10.1016/j.ijhydene.2013.05.082

    Article  Google Scholar 

  • Koek M, Kreuzer O P, Maier W D, et al. 2010. A review of the PGM industry, deposit models and exploration practices: Implications for Australia's PGM potential. Resources Policy, 35(1): 20–35, doi: 10.1016/j.resourpol.2009.08.001

    Article  Google Scholar 

  • Langendorff V, Cuvelier G, Michon C, et al. 2000. Effects of carrageen-an type on the behaviour of carrageenan/milk mixtures. Food Hydrocolloid, 14(4): 273–280, doi: 10.1016/S0268-005X(99)00064-8

    Article  Google Scholar 

  • Lin Peng, Chen Min, Guo Laodong. 2015. Effect of natural organic matter on the adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Marine Chemistry, 173: 291–301, doi: 10.1016/j.marchem.2014.08.006

    Article  Google Scholar 

  • Liu Yan, Chen Mingmao, Wang Shuaihua, et al. 2014. New insight into the stereoselective interactions of quinine and quinidine, with bovine serum albumin. Journal of Molecular Recognition, 27(5): 239–249, doi: 10.1002/jmr.2355

    Article  Google Scholar 

  • Lundin L, Odic K, Foster T J, et al. 2000. Phase separation in mixed carrageenan systems. In: Lai M, Lillford P J, Naik V M, et al., eds. Supramolecular and Colloidal Structures in Biomaterials and Biosubstrates. Singapore: World Scientific, 436–449

    Chapter  Google Scholar 

  • Mitra A, Sen I S. 2017. Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination. Geochimica et Cosmochimica Acta, 216: 417–432, doi: 10.1016/j.gca.2017.08.025

    Article  Google Scholar 

  • Mudd G M. 2012. Key trends in the resource sustainability of platinum group elements. Ore Geology Reviews, 46: 106–117, doi: 10.1016/j.oregeorev.2012.02.005

    Article  Google Scholar 

  • Para J, Coble P G, Charriere B, et al. 2010. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhone River. Biogeosciences, 7(12): 4083–4103, doi: 10.5194/bg-7-4083-2010

    Article  Google Scholar 

  • Pawlak J, Łodyga-Chrušcińska E, Chrustowicz J. 2014. Fate of platinum metals in the environment. Journal of Trace Elements in Medicine and Biology, 28(3): 247–254, doi: 10.1016/j.jtemb.2014.03.005

    Article  Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R. 2004. Platinum group elements in the environment and their health risk. Science of the Total Environment, 318(1–3): 1–43, doi: 10.1016/S0048-9697(03) 00372-3

    Article  Google Scholar 

  • Reith F, Campbell S G, Ball A S, et al. 2014. Platinum in Earth surface environments. Earth-Science Reviews, 131: 1–21, doi: 10.1016/j.earscirev.2014.01.003

    Article  Google Scholar 

  • Ruchter N, Sures B. 2015. Distribution of platinum and other traffic related metals in sediments and clams (Corbicula sp.). Water Research, 70: 313–324, doi: 10.1016/j.watres.2014.12.011

    Article  Google Scholar 

  • Sorensen S N, Engelbrekt C, Lützhøft H C H, et al. 2016. A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environmental Science & Technology, 50(19): 10635–10643

    Article  Google Scholar 

  • Sucha V, Mihaljevic M, Ettler V, et al. 2016. The pH-dependent release of platinum group elements (PGEs) from gasoline and diesel fuel catalysts: Implication for weathering in soils. Journal of Environmental Management, 171: 52–59

    Article  Google Scholar 

  • Sures B, Zimmermann S. 2007. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha. Environmental Pollution, 146(2): 444–451, doi: 10.1016/j.envpol.2006.07.004

    Article  Google Scholar 

  • Takahashi Y, Minai Y, Ambe S, et al. 1999. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochimica et Cosmochimica Acta, 63(6): 815–836, doi: 10.1016/S0016-7037(99)00065-4

    Article  Google Scholar 

  • Turner A, Crussell M, Millward G E, et al. 2006. Adsorption kinetics of platinum group elements in river water. Environmental Science & Technology, 40(5): 1524–1531

    Article  Google Scholar 

  • Verdugo P, Alldredge A L, Azam F, et al. 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Marine Chemistry, 92(1–4): 67–85, doi: 10.1016/j.marchem.2004.06.017

    Article  Google Scholar 

  • Wiseman C L S, Zereini F. 2009. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Science of the Total Environment, 407(8): 2493–2500, doi: 10.1016/j.scitotenv.2008.12.057

    Article  Google Scholar 

  • Wood S A. 1996. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geology Reviews, 11(1-3): 1–31, doi: 10.1016/0169-1368(95) 00013-5

    Article  Google Scholar 

  • Wood S A, Tait C D, Vlassopoulos D, et al. 1994. Solubility and spectroscopic studies of the interaction of Palladium with simple carboxylic acids and fulvic acid at low temperature. Geochimica et Cosmochimica Acta, 58(2): 625–637, doi: 10.1016/0016-7037(94)90493-6

    Article  Google Scholar 

  • Xu Tongwen, Fu Rongqiang, Yan Lifeng. 2003. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. Journal of Colloid and Interface Science, 262(2): 342–350, doi: 10.1016/S0021-9797(03)00208-X

    Article  Google Scholar 

  • Xu Huacheng, Guo Laodong. 2017. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters. Water Research, 117: 115–126, doi: 10.1016/j.watres.2017.04.006

    Article  Google Scholar 

  • Yang Weifeng, Guo Laodong, Chuang C Y, et al. 2013. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochimica et Cosmochimica Acta, 107: 47–64, doi: 10.1016/j.gca.2012.12.039

    Article  Google Scholar 

  • Ye Jinfu, Lin Dongqiang, Yao Shanjing. 2007. Zeta potential of bovine serum albumin and its correlation to retention factor of ion exchange chromatography. Journal of Chemical Engineering of Chinese Universities (in Chinese), 21(3): 381–385

    Google Scholar 

  • Zimmermann S, Wolff C, Sures B. 2017. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, 224: 368–376, doi:10.1016/j.envpol.2017.02.016

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yuxi Lu and Tianci Gao from Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences for their constant field and laboratory assistance, helpful advice and in-depth discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelu Gao.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41376083; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA23050303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Gao, X., Xing, Q. et al. Adsorption kinetics of platinum group elements onto macromolecular organic matter in seawater. Acta Oceanol. Sin. 38, 8–16 (2019). https://doi.org/10.1007/s13131-019-1433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1433-3

Key words

Navigation