Skip to main content
Log in

An improved frequency shift method for ATI-SAR flat earth phase removal

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

An improved frequency shift method is proposed to remove the flat earth phase in ATI-SAR ocean surface motion detection in this study. First, two conventional flat earth effect removal methods (i.e., the frequency shift method and the orbital parameter method) are introduced and compared. Then, two improvements to frequency shift method are suggested. In the first improvement, the phase diagram is divided into several sub-blocks to calculate the phase fringe frequency. In the second improvement, a function between the phase of land regions and position is fitted to correct the residual flat earth phase based on the phase of the land regions that tend toward zero in an along-track interferogram. It is found that the improved frequency shift method is greatly improved; and it agrees well with the orbital parameter method, and achieves similar accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai Bin, Li Xia. 2009. An analysis of different InSAR flattening algorithms and their influence on DEM accuracy. RemoteSensing for Land & Resources (in Chinese), 21(2): 3–12

    Google Scholar 

  • Bamler R, Hartl P. 1998. Synthetic aperture radar interferometry. InverseProblems, 14(4): R1–R54, doi: 10.1088/0266-5611/14/4/001

    Google Scholar 

  • Cao Yongxing, Fan Zhong, Chen Yan, et al. 2013. Flat earth removal and baseline estimation based on orbit parameters using Radarsat-2 image. In: Proceedings of 2013 IEEE Proceedings of the Geoscience and Remote Sensing Symposium. Melbourne, VIC, Australia: IEEE, 346–349

    Google Scholar 

  • Gatelli F, Guamieri A M, Parizzi F, et al. 1994. The wavenumber shift in SAR interferometry. IEEETransactions on Geoscience and Remote Sensing, 32(2): 4–855, doi: 10.1109/36.298013

    Google Scholar 

  • Geudtner D, Schwäbisch M. 1996. An algorithm for precise reconstruction of InSAR imaging geometry: application to “Flat-Earth” phase removal, phase-to-height conversion and geocoding of InSAR-derived DEMs. In: Proceedings of the EUSAR'96-Konferenz. Königswinter, Germany: EUSAR, 249–252

    Google Scholar 

  • Kimura H, Todo M. 1997. Baseline estimation using ground points for interferometric SAR. In: Proceedings of 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. RemoteSensing—A Scientific Vision for Sustainable Development. Singapore, Singapore: IEEE, 442–444

    Chapter  Google Scholar 

  • Kohlhase A O, Feigl K L, Massonnet D. 2003. Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories. Journalof Geodesy, 77(2): 9–493, doi: 10.1007/s00190-003-0336-3

    Google Scholar 

  • Krieger G, Moreira A, Fiedler H, et al. 2007. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEETransactions on Geoscience and Remote Sensing, 45(2): 11–3317, doi: 10.1109/TGRS.2007.900693

    Google Scholar 

  • Moreira J, Schwabisch M, Fornaro G, et al. 1995. X-SAR interferometry: first results. IEEETransactions on Geoscience and Remote Sensing, 33(2): 4–950, doi: 10.1109/36.406681

    Google Scholar 

  • Peng S R, He K X, Wang Y N, et al. 2009. A high accurate approach for InSAR flat earth effect removal. In: Proceedings of 2009 International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, Hunan, China: IEEE, 742–745

    Chapter  Google Scholar 

  • Romeiser R, Runge H, Suchandt S, et al. 2014. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis. IEEETransactions on Geoscience and Remote Sensing, 52(2): 5–2759, doi: 10.1109/TGRS.2013.2265659

    Google Scholar 

  • Romeiser R, Suchandt S, Runge H, et al. 2010. First analysis of TerraSAR-X along-track InSAR-derived current fields. IEEETransactions on Geoscience and Remote Sensing, 48(2): 2–820, doi: 10.1109/TGRS.2009.2030885

    Article  Google Scholar 

  • Rosen P A, Hensley S, Joughin I R, et al. 2000. Synthetic aperture radar interferometry. Proceedingsof the IEEE, 88(2): 3–333, doi: 10.1109/5.838084

    Google Scholar 

  • Stangl M, Werninghaus R, Schweizer B, et al. 2006. TerraSAR-X technologies and first results. IEEProceedings-Radar, Sonar and Navigation, 153(2): 2–86, doi: 10.1049/ip-rsn:20045119

    Google Scholar 

  • Suchandt S, Runge H. 2015. Ocean surface observations using the TanDEM-X satellite formation. IEEEJournal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 11–5096, doi: 10.1109/JSTARS.2015.2446893

    Google Scholar 

  • Wang Lucai, Wang Yaonan, Dai Yuxing. 2004. An improving algorithm of eliminating the horizontal ground effect of phase interference graph in InSAR imaging. Journalof Natural Science of Hunan Normal University (in Chinese), 27(2): 3–51

    Google Scholar 

  • Werninghaus R, Buckreuss S. 2010. The TerraSAR-X mission and system design. IEEETransactions on Geoscience and Remote Sensing, 48(2): 2–606, doi: 10.1109/TGRS.2009.2031062

    Article  Google Scholar 

  • Yoon Y T, Eineder M, Yague-Martinez N, et al. 2009. TerraSAR-X precise trajectory estimation and quality assessment. IEEETransactions on Geoscience and Remote Sensing, 47(2): 6–1859, doi: 10.1109/TGRS.2008.2006983

    Google Scholar 

  • Zebker H A, Rosen P A, Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journalof Geophysical Research: Solid Earth, 102(B4): 7547–7563, doi: 10.1029/96JB03804

    Article  Google Scholar 

Download references

Acknowledgements

We thank German Aerospace Center (DLR) for providing the TanDEM-X formation ATI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqing Fan.

Additional information

Foundation item: The National Key Research and Development Program of China under contract No. 2016YFC1402703; the National Natural Science Foundation of China under contract Nos 61471136 and 61501130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, J., Meng, J. et al. An improved frequency shift method for ATI-SAR flat earth phase removal. Acta Oceanol. Sin. 38, 94–100 (2019). https://doi.org/10.1007/s13131-019-1426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1426-2

Key words

Navigation