Skip to main content

Advertisement

Log in

Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The mesozooplankton in both epipelagic and mesopelagic zones is essentially important for the study of ecosystem and biological carbon pump. Previous studies showed that the diel vertical migration (DVM) pattern of mesozooplankton varied among ecosystems. However, that pattern was largely unknown in the Western Pacific Warm Pool (WPWP). The vertical distribution, DVM and community structure of mesozooplankton from the surface to 1 000 m were compared at Stas JL7K (WPWP) and MA (North Pacific Subtropical Gyre, NPSG). Two sites showed similarly low biomass in both epipelagic and mesopelagic zones, which were in accordance with oligotrophic conditions of these two ecosystems. Stronger DVM (night/day ratio) was found at JL7K (1.31) than that at MA (1.09) on surface 0–100 m, and an obvious night increase of mesopelagic biomass was observed at JL7K, which was probably due to migrators from bathypelagic zone. Active carbon flux by DVM of zooplankton was estimated to be 0.23 mmol/(m2·d) at JL7K and 0.16 mmol/(m2·d) at MA. The community structure analysis showed that calanoid copepods, cnidarians and appendicularians were the main contributors to DVM of mesozooplankton at both sites. We also compared the present result with previous studies of the two ecosystems, and suggested that the DVM of mesozooplankton was more homogeneous within the WPWP and more variable within the NPSG, though both ecosystems showed typically extremely oligotrophic conditions. The different diel vertical migration strength of mesozooplankton between NPSG and WPWP implied different efficiency of carbon pump in these two ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Mutairi H, Landry M R. 2001. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9): 2083–2103, doi: 10.1016/S0967-0645(00)00174-0

    Article  Google Scholar 

  • Andersen V, Gubanova A, Nival P, et al. 2001. Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 2. Vertical distributions and migrations. Journal of Plankton Research, 23(3): 243–261, doi: 10.1093/plankt/23.3.243

    Article  Google Scholar 

  • Angel M V. 1999. Ostracoda. In: Boltovskoy D, ed. South Atlantic Zooplankton. Leiden: Backhuys Publishers, 815–868

    Google Scholar 

  • Angel M V, Pugh P R. 2000. Quantification of diel vertical migration by micronektonic taxa in the northeast Atlantic. Hydrobiologia, 440(1-3): 161–179

    Article  Google Scholar 

  • Antoine D, André J M, Morel A. 1996. Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10(1): 57–69

    Article  Google Scholar 

  • Ariza A, Garijo J C, Landeira J M, et al. 2015. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Progress in Oceanography. 134. 330–342, doi: 10.1016/j.pocean.2015.03.003

    Article  Google Scholar 

  • Blanchot J, André J M, Navarette C, et al. 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep Sea Research Part I: Oceanographic Research Papers, 48(1): 297–314, doi: 10.1016/S0967-0637(00)00063-7

    Article  Google Scholar 

  • Cavan E L, Henson S A, Belcher A, et al. 2017. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences, 14(1): 177–186, doi: 10.5194/bg-14-177-2017

    Article  Google Scholar 

  • Clutter R I, Anraku M. 1968. Avoidance of samplers. In: Tranter D J, Fraser A J, eds. UNESCO Monographs on Oceanographic Methodology. 2. Zooplankton Sampling. Paris: UNESCO

    Google Scholar 

  • Cravatte S, Delcroix T, Zhang Dongxiao, et al. 2009. Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics, 33(4): 565–589, doi: 10.1007/s00382-009-0526-7

    Article  Google Scholar 

  • Dai Luping, Li Chaolun, Tao Zhencheng, et al. 2017. Zooplankton abundance, biovolume and size spectra down t. 300. m depth in the western tropical North Pacific during autum. 2014. Deep Sea Research Part I: Oceanographic Research Papers. 121. 1–13, doi: 10.1016/j.dsr.2016.12.015

    Article  Google Scholar 

  • Dam H G, Roman M R, Youngbluth M J. 1995. Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-mi-grant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Research Part I: Oceanographic Research Papers, 42(7): 1187–1197, doi: 10.1016/0967-0637(95)00048-B

    Article  Google Scholar 

  • Folt C L, Burns C W. 1999. Biological drivers of zooplankton patchiness. Trends in Ecology & Evolution, 14(8): 300–305

    Article  Google Scholar 

  • González H E, Smetacek V. 1994. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Marine Ecology Progress Series. 113. 233–246, doi: 10.3354/meps113233

    Article  Google Scholar 

  • Gorsky G, Chrétiennot-Dinet M J, Blanchot J, et al. 1999. Picoplank-ton and nanoplankton aggregation by appendicularians: fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. Journal of Geophysical Research: Oceans, 104(C2): 3381–3390, doi: 10.1029/98JC01850

    Article  Google Scholar 

  • Hannides C C S, Drazen J C, Popp B N. 2015. Mesopelagic zooplankton metabolic demand in the North Pacific Subtropical Gyre. Limnology and Oceanography, 60(2): 419–428, doi: 10.1002/lno.10032

    Article  Google Scholar 

  • Hannides C C S, Popp B N, Choy C A, et al. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnology and Oceanography, 58(6): 1931–1946, doi: 10.4319/lo.2013.58. 6.1931

    Article  Google Scholar 

  • Hays G C. 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia, 503(1–3): 163–170, doi: 10.1023/B:HYDR.0000008476. 23617.b0

    Article  Google Scholar 

  • Hénin C, Du Penhoat Y, Ioualalen M. 1998. Observations of sea surface salinity in the western Pacific fresh pool: large-scale changes in 1992–1995. Journal of Geophysical Research: Oceans, 103(C4): 7523–7536, doi: 10.1029/97JC01773

    Article  Google Scholar 

  • Hwang J S, Dahms H U, Tseng L C, et al. 2007. Intrusions of the Kuroshio Current in the northern South China Sea affect copepod assemblages of the Luzon Strait. Journal of Experimental Marine Biology and Ecology, 352(1): 12–27, doi: 10.1016/j.jembe.2007.06.034

    Article  Google Scholar 

  • Ikeda T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Marine Biology, 85(1): 1–11, doi: 10.1007/BF00396409

    Article  Google Scholar 

  • Ishizaka J, Kiyosawa H, Ishida K, et al. 1994. Meridional distribution and carbon biomass of autotrophic picoplankton in the Central North Pacific Ocean during late northern summe. 1990. Deep Sea Research Part I: Oceanographic Research Papers, 41(11-12): 1745–1766, doi: 10.1016/0967-0637(94)90071-X

    Article  Google Scholar 

  • Isla A, Scharek R, Latasa M. 2015. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. Journal of Marine Systems. 143. 86–97, doi: 10.1016/j.jmarsys.2014.10.017

    Article  Google Scholar 

  • Jónasdóttir S H, Visser A W, Richardson K, et al. 2015. Seasonal cope-pod lipid pump promotes carbon sequestration in the deep North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 112(39): 12122–12126, doi: 10.1073/pnas.1512110112

    Article  Google Scholar 

  • Kaeriyama H, Ikeda T. 2002. Vertical distribution and population structure of the three dominant planktonic ostracods (Dis-coconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific. Plankton Biology and Ecology. 49. 66–74

    Google Scholar 

  • Karl D M. 1999. A sea of change: biogeochemical variability in the north pacific subtropical gyre. Ecosystems, 2(3): 181–214, doi: 10.1007/s100219900068

    Article  Google Scholar 

  • Kawahata H, Suzuki A, Ohta H. 2000. Export fluxes in the Western Pacific Warm Pool. Deep Sea Research Part I: Oceanographic Research Papers, 47(11): 2061–2091, doi: 10.1016/S0967-0637(00)00025-X

    Article  Google Scholar 

  • Kitamura M, Kobari T, Honda M C, et al. 2016. Seasonal changes in the mesozooplankton biomass and community structure in subarctic and subtropical time-series stations in the western North Pacific. Journal of Oceanography, 72(3): 387–402, doi: 10.1007/s10872-015-0347-8

    Article  Google Scholar 

  • Kobari T, Kitamura M, Minowa M, et al. 2013. Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans. Deep Sea Research Part I: Oceanographic Research Papers. 81. 78–88, doi: 10.1016/j.dsr.2013.07.003

    Article  Google Scholar 

  • Kobari T, Nakamura R, Unno K, et al. 2016. Seasonal variability in carbon demand and flux by mesozooplankton communities at subarctic and subtropical sites in the western North Pacific Ocean. Journal of Oceanography, 72(3): 403–418, doi: 10.1007/s10872-015-0348-7

    Article  Google Scholar 

  • Kobari T, Steinberg D K, Ueda A, et al. 2008. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14-15): 1648–1660, doi: 10.1016/j.dsr2.2008.04.016

    Article  Google Scholar 

  • Koppelmann R, Böttger-Schnack R, Möbius J, et al. 2009. Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements. Journal of Plankton Research, 31(6): 669–686, doi: 10.1093/plankt/fbp013

    Article  Google Scholar 

  • Kremer P, Madin L P. 1992. Particle retention efficiency of salps. Journal of Plankton Research, 14(7): 1009–1015, doi: 10.1093/plankt/14.7.1009

    Article  Google Scholar 

  • Lampitt R S, Wishner K F, Turley C M, et al. 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Marine Biology, 116(4): 689–702, doi: 10.1007/BF00355486

    Article  Google Scholar 

  • Landry M R, Al-Mutairi H, Selph K E, et al. 2001. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8-9): 2037–2061, doi: 10.1016/S0967-0645(00)00172-7

    Article  Google Scholar 

  • Le Borgne R, Barber R T, Delcroix T, et al. 2002. Pacific warm pool and divergence: temporal and zonal variations on the equator and their effects on the biological pump. Deep Sea Research Part II: Topical Studies in Oceanography, 49(13-14): 2471–2512, doi: 10.1016/S0967-0645(02)00045-0

    Article  Google Scholar 

  • Le Borgne R, Rodier M. 1997. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotroph-ic equatorial Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 44(9-10): 2003–2023, doi: 10.1016/S0967-0645(97)00034-9

    Article  Google Scholar 

  • Lebrato M, de Jesus Mendes P, Steinberg D K, et al. 2013. Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnology and Oceanography, 58(3): 1113–1122, doi: 10.4319/lo.2013.58.3.1113

    Article  Google Scholar 

  • Liu H, Nolla H A, Campbell L. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquatic Microbial Ecology. 12. 39–47, doi: 10.3354/ame012039

    Article  Google Scholar 

  • López-Urrutia Á, Harris R P, Smith T. 2004. Predation by calanoid copepods on the appendicularian Oikopleura dioica. Limnology and Oceanography, 49(1): 303–307, doi: 10.4319/lo.2004.49.1.0303

    Article  Google Scholar 

  • Lucas C H, Jones D O B, Hollyhead C J, et al. 2014. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecology and Biogeography, 23(7): 701–714, doi: 10.1111/geb.12169

    Article  Google Scholar 

  • Moriarty R, Buitenhuis E T, Le Quéré C, et al. 2013. Distribution of known macrozooplankton abundance and biomass in the global ocean. Earth System Science Data, 5(2): 241–257, doi: 10.5194/essd-5-241-2013

    Article  Google Scholar 

  • Nakamura Y, Suzuki K, Suzuki S Y, et al. 1997. Production of Oikopleura dioica (Appendicularia) following a picoplankton ‘bloom’ in a eutrophic coastal area. Journal of Plankton Research, 19(1): 113–124, doi: 10.1093/plankt/19.1.113

    Article  Google Scholar 

  • Nishibe Y, Takahashi K, Ichikawa T, et al. 2015. Degradation of discarded appendicularian houses by oncaeid copepods. Limnology and Oceanography, 60(3): 967–976, doi: 10.1002/lno.10061

    Article  Google Scholar 

  • Nival P, Nival S. 1976. Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects on grazing. Limnology and Oceanography, 21(1): 24–38, doi: 10.4319/lo.1976.21.1.0024

    Article  Google Scholar 

  • Ohman M D, Romagnan J B. 2016. Nonlinear effects of body size and optical attenuation on Diel Vertical Migration by zooplankton. Limnology and Oceanography, 61(2): 765–770, doi: 10.1002/lno. 10251

    Article  Google Scholar 

  • Ohtsuka S, Bottger-Schnack R, Okada M, et al. 1996. In situ feeding habits of Oncaea (Copepoda: Poecilostomatoida) from the uppe. 25. m of the central Red Sea, with special reference to consumption of appendicularian houses. Bulletin of the Plankton Society of Japan, 43(2): 89–105

    Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical & Biological Methods for Seawater Analysis. Oxford: Pergamon Press

    Google Scholar 

  • Pearre S Jr. 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews, 78(1): 1–79, doi: 10.1017/S146479310200595X

    Article  Google Scholar 

  • Roman M R, Dam H G, Gauzens A L, et al. 1995. Zooplankton variability on the equator at 140°W during the JGOFS EqPac study. Deep Sea Research Part II: Topical Studies in Oceanography, 42(2-3): 673–693, doi: 10.1016/0967-0645(95)00025-L

    Article  Google Scholar 

  • Sameoto D, Wiebe P, Runge J, et al. 2000. Collecting zooplankton. In: Harris R, Wiebe P, Lenz J, et al., eds. ICES Zooplankton Methodology Manual. London: Academic Press, 55–81

    Chapter  Google Scholar 

  • Sato R, Ishibashi Y, Tanaka Y, et al. 2008. Productivity and grazing impact of Oikopleura dioica (Tunicata, Appendicularia) in Tokyo Bay. Journal of Plankton Research, 30(3): 299–309

    Article  Google Scholar 

  • Schlitzer R. 2000. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhatla P, Heimann M, Rayner P, et al., eds. Inverse Methods in Global Biogeochemical Cycles. Washington: American Geophysical Union, 107–124

    Chapter  Google Scholar 

  • Silguero J M B, Robison B H. 2000. Seasonal abundance and vertical distribution of mesopelagic calycophoran siphonophores in Monterey Bay, CA. Journal of Plankton Research, 22(6): 1139–1153, doi: 10.1093/plankt/22.6.1139

    Article  Google Scholar 

  • Sommer F, Hansen T, Feuchtmayr H, et al. 2003. Do calanoid cope-pods suppress appendicularians in the coastal ocean?. Journal of Plankton Research, 25(7): 869–871, doi: 10.1093/plankt/25.7.869

    Article  Google Scholar 

  • Steinberg D K, Carlson C A, Bates N R, et al. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 47(1): 137–158, doi: 10.1016/S0967-0637(99)00052-7

    Article  Google Scholar 

  • Steinberg D K, Cope J S, Wilson S E, et al. 2008a. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14-15): 1615–1635, doi: 10.1016/j.dsr2.2008.04.025

    Article  Google Scholar 

  • Steinberg D K, Landry M R. 2017. Zooplankton and the Ocean Carbon Cycle. Annual Review of Marine Science. 9. 413–444, doi: 10.1146/annurev-marine-010814-015924

    Google Scholar 

  • Steinberg D K, van Mooy B A S, Buesseler K O, et al. 2008b. Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnology and Oceanography, 53(4): 1327–1338, doi: 10.4319/lo.2008.53.4.1327

    Article  Google Scholar 

  • Sun Dong, Wang Chunsheng. 2017. Latitudinal distribution of zooplankton communities in the Western Pacific along 160°E during summe. 2014. Journal of Marine Systems. 169. 52–60, doi: 10.1016/j.jmarsys.2017.01.011

    Article  Google Scholar 

  • Suzuki K, Handa N, Kiyosawa H, et al. 1997. Temporal and spatial distribution of phytoplankton pigments in the Central Pacific Ocean along 175°E during the boreal summers o. 199. an. 1993. Journal of Oceanography, 53(4): 383–396

    Google Scholar 

  • Svensen C, Nejstgaard J C. 2003. Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. Journal of Plankton Research, 25(8): 917–926, doi: 10.1093/plankt/25.8.917

    Article  Google Scholar 

  • Takahashi K, Kuwata A, Sugisaki H, et al. 2009. Downward carbon transport by diel vertical migration of the copepods Metridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 56(10): 1777–1791, doi: 10.1016/j.dsr.2009.05.006

    Article  Google Scholar 

  • Uye S I, Ichino S. 1995. Seasonal variations in abundance, size composition, biomass and production rate of Oikopleura dioica (Fol) (Tunicata: Appendicularia) in a temperate eutrophic inlet. Journal of Experimental Marine Biology and Ecology, 189(1-2): 1–11, doi: 10.1016/0022-0981(95)00004-B

    Article  Google Scholar 

  • Vannier J, Abe K, Ikuta K. 1998. Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Marine Biology, 132(3): 391–408, doi: 10.1007/s002270050406

    Article  Google Scholar 

  • Wilson S E, Steinberg D K, Buesseler K O. 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14-15): 1636–1647, doi: 10.1016/j.dsr2.2008.04.019

    Article  Google Scholar 

  • Yamaguchi A, Matsuno K, Homma T. 2015. Spatial changes in the vertical distribution of calanoid copepods down to great depths in the North Pacific. Zoological Studies, 54(1). 13. doi: 10.1186/s40555-014-0091-6

    Article  Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, et al. 2002. Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep Sea Research Part I: Oceanographic Research Papers, 49(6): 1007–1025, doi: 10.1016/S0967-0637(02)00008-0

    Article  Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, et al. 2004. Latitudinal differences in the planktonic biomass and community structure down to the greater depths in the Western North Pacific. Journal of Oceanography, 60(4): 773–787, doi: 10.1007/s10872-004-5770-1

    Article  Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, et al. 2005. Biomass and chemical composition of net-plankton down to greater depths (0-5800 m) in the western North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 52(2): 341–353, doi: 10.1016/j.dsr.2004.09.007

    Article  Google Scholar 

  • Zhang Dongsheng, Wang Chunsheng, Liu Zhensheng, et al. 2012. Spatial and temporal variability and size fractionation of chlorophyll a in the tropical and subtropical Pacific Ocean. Acta Oceanologica Sinica, 31(3): 120–131, doi: 10.1007/s13131-012-0212-1

    Article  Google Scholar 

Download references

Acknowledgements

We thank the members of R/V Haiyang 6 for their great help during the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Wang.

Additional information

Foundation item: The National Basic Research Program (973 Program) of China under contract No. 2015CB755902; the China Ocean Mineral Resources Research and Development Association Program under contract No. DY135-E2-2-4; the Scientific Research Fund of the Second Institute of Oceanography, SOA under contract No. JG1712; the National Natural Science Foundation of China under contract No. 41406116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zhang, D., Zhang, R. et al. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 38, 32–45 (2019). https://doi.org/10.1007/s13131-018-1237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1237-x

Key words

Navigation