Cytogenetic characterization and description of an X1X1X2X2/X1X2Y sex chromosome system in Collichthys lucidus (Richardson, 1844)
Abstract
The chromosomes of spinyhead croaker Collichthys lucidus (Richardson, 1844) were characterized for the first time by fluorescence staining, self genomic in situ hybridization (self-GISH), and multicolor fluorescence in situ hybridization (FISH) with 18S rDNA, 5S rDNA and telomeric sequence probes. The female karyotype has exclusively 24 pairs of acrocentric chromosomes (2n=48a, NF=48), while the male one consists of 22 pairs of acrocentric chromosomes, 2 monosomic acrocentric chromosomes and a metacentric chromosome (2n=1m+46a, NF=48). The difference between female and male karyotypes indicates the presence of a sex chromosome of X1X1X2X2/X1X2Y type, where Y is the unique metacentric chromosome in the male karyotype. As revealed by FISH, 5S rDNA and 18S rDNA sites were mapped at syntenic position of the largest acrocentric chromosome (X1), and the short arms of the Y chromosome as well. An X1-chromosome specific interstitial telomeric signal (ITS) was detected overlapping the 5S rDNA sites. In addition, self-GISH revealed that the repetitive DNAs accumulated on all the putative sex chromosome. Chromosome fusion accompanied by a partial deletion in the ancestral karyotype (2n=48a) is hypothesized for the origin of such multiple sex chromosome system. The present study, as the first description of differentiated sex chromosome in family Sciaenidae, will give clues to the studies on the sex chromosome of other Sciaenids.
Keywords
Collichthys lucidus karyotype sex chromosome rDNA fluorescence in situ hybridization interstitial telomeric signal (ITS)Preview
Unable to display preview. Download preview PDF.
References
- Accioly I V, Molina W F. 2008. Cytogenetic studies in Brazilian marine Sciaenidae and Sparidae fishes (Perciformes). Genet Mol Res, 7(2): 358–370CrossRefGoogle Scholar
- Arai R. 2011. Fish Karyotypes: A Check List. Tokyo: Springer, 163–209CrossRefGoogle Scholar
- Artoni R F, Bertollo L A C. 2002. Evolutionary aspects of the ZZ/ZW sex chromosome system in the Characidae fish, genus Triportheus. A monophyletic state and NOR location on the W chromosome. Heredity, 89(1): 15–19CrossRefGoogle Scholar
- Bitencourt J A, Sampaio I, Ramos R T C, et al. 2017. First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2X2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish, 14(1): 90–95CrossRefGoogle Scholar
- Blanco D R, Vicari M R, Lui R L, et al. 2014. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica, 142(2): 119–126Google Scholar
- Born G G, Bertollo L A C. 2000. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NORbearing X chromosome. Chromosome Res, 8(2): 111–118CrossRefGoogle Scholar
- Chalopin D, Volff J N, Galiana D, et al. 2015. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res, 23(3): 545–560CrossRefGoogle Scholar
- Charlesworth D, Charlesworth B, Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity, 95(2): 118–128CrossRefGoogle Scholar
- Chen Songlin, Zhang Guojie, Shao Changwei, et al. 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet, 46(3): 253–260CrossRefGoogle Scholar
- Cheng Jiao, Ma Guoqiang, Miao Zhenqing, et al. 2012. Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations. Mol Biol Rep, 39(4): 4249–4259CrossRefGoogle Scholar
- Devlin R H, Nagahama Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208(3-4): 191–364CrossRefGoogle Scholar
- Diniz D, Moreira-Filho O, Bertollo L A C. 2008. Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae). Genetica, 133(1): 85–91CrossRefGoogle Scholar
- Ferreira M, Garcia C, Matoso D A, et al. 2016. A new multiple sex chromosome system X1X1X2X2/X1X2Y in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica, 144(5): 591–599CrossRefGoogle Scholar
- Gold J R, Li Y C, Shipley N S, et al. 1990. Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol, 37(4): 563–575CrossRefGoogle Scholar
- Gornung E. 2013. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res, 141(2-3): 90–102CrossRefGoogle Scholar
- Graves J A M. 2006. Sex chromosome specialization and degeneration in mammals. Cell, 124(5): 901–914CrossRefGoogle Scholar
- Howell W M, Black D A. 1979. Location of the nucleolus organizer regions on the sex chromosomes of the banded killifish, Fundulus diaphanus. Copeia, 1979(3): 544–546CrossRefGoogle Scholar
- Ijdo J W, Wells R A, Baldini A, et al. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res, 19(17): 4780CrossRefGoogle Scholar
- Kitano J, Peichel C L. 2012. Turnover of sex chromosomes and speciation in fishes. Environ Biol Fishes, 94(3): 549–558CrossRefGoogle Scholar
- Kitano J, Ross J A, Mori S, et al. 2009. A role for a neo-sex chromosome in stickleback speciation. Nature, 461(7267): 1079–1083CrossRefGoogle Scholar
- Levan A, Fredga K, Sandberg A A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52(2): 201–220CrossRefGoogle Scholar
- Liao Mengxian, Zheng Jiao, Wang Zhiyong, et al. 2017. Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae). Chin J Oceanol Limnol, doi: 10.1007/s00343-018-6272-0Google Scholar
- Liu Zhiyong, Moore P H, Ma Hao, et al. 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 427(6972): 348–352CrossRefGoogle Scholar
- Nelson J S, Grande T C, Wilson M V H. 2016. Fishes of the World. 5th ed. New York: John Wiley and Sons Inc, 498–499CrossRefGoogle Scholar
- Palacios-Gimenez O M, Castillo E R, Martí D A, et al. 2013. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol Biol, 13: 167CrossRefGoogle Scholar
- Poltronieri J, Marquioni V, Bertollo L A C, et al. 2013. Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet Genome Res, 142(1): 40–45CrossRefGoogle Scholar
- Reed K M, Phillips R B. 1995. Molecular cytogenetic analysis of the double-CMA3 chromosome of lake trout, Salvelinus namaycush. Cytogenet Cell Genet, 70(1-2): 104–107CrossRefGoogle Scholar
- Reed K M, Phillips R B. 1997. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res, 5(4): 221–227CrossRefGoogle Scholar
- Ren X J, Eisenhour L, Hong C S, et al. 1997. Roles of rDNA spacer and transcription unit-sequences in X-Y meiotic chromosome pairing in Drosophila melanogaster males. Chromosoma, 106(1): 29–36CrossRefGoogle Scholar
- Ross J A, Peichel C L. 2008. Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish. Genetics, 179(4): 2173–2182CrossRefGoogle Scholar
- Ross J A, Urton J R, Boland J, et al. 2009. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet, 5(2): e1000391CrossRefGoogle Scholar
- She Chaowen, Liu Jingyu, Diao Ying, et al. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by selfgenomic in situ hybridization. J Genet Genomics, 34(5): 437–448CrossRefGoogle Scholar
- Stitou S, Burgos M, Zurita F, et al. 1997. Recent evolution of NORbearing and sex chromosomes of the North African rodent Lemniscomys barbarus. Chromosome Res, 5(7): 481–485CrossRefGoogle Scholar
- Uyeno T, Miller R R. 1971. Multiple sex chromosomes in a Mexican cyprinodontid fish. Nature, 231(5303): 452–453CrossRefGoogle Scholar
- Yano C F, Poltronieri J, Bertollo L A C, et al. 2014. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS One, 9(3): e90946CrossRefGoogle Scholar
- Zheng Jiao, Cao Kuan, Yang Anran, et al. 2016. Chromosome mapping using genomic DNA and repetitive DNA sequences as probes for somatic chromosome identification in Nibea albiflora. J Fish China (in Chinese), 40(8): 1156–1162Google Scholar