Advertisement

Acta Oceanologica Sinica

, Volume 36, Issue 5, pp 99–104 | Cite as

A new electroplated Ir/Ir(OH) x pH electrode and its application in the coastal areas of Newport Harbor, California

  • Xiao Zhang
  • Ying Ye
  • Yating Kan
  • Yuanfeng Huang
  • Jianjun Jia
  • Yue Zhao
  • Chen-Tung Arthur Chen
  • Huawei Qin
Article

Abstract

Resulting from the rising levels of atmospheric carbon, ocean acidification has become a global problem. It has significant impacts on the development, survival, growth and physiology of marine organisms. Therefore, a high-precision sensor is urgently needed to measure the pH of sea-water. Iridium wire with a diameter of 0.25 mm is used as the substrate, and an Ir/Ir(OH) x pH electrode is prepared by a one-step electrochemical method in a LiOH solution at the room temperature. A scanning electron microscope (SEM) observation reveals that it is coated with nanoscale particles. In laboratory tests, the electrode exhibits a very promising pH response, with an ideal Nernst slope (56.14–59.52), fast response, good stability and long life-span in tested pH buffer solutions. For a sea trial, four pH electrodes and one Ag/AgCl reference electrode are integrated with a self-made chemical sensor, and a profile detection of nearly 70 m is implemented near Newport Harbor, California on August 3, 2015. The results reflect that the pH value measured by the sensor is very close to the data given by Sea-Bird 911 plus CTD, with a difference value ranging from 0.000 075 to 0.064 719. And the sensor shows a better data matching degree in 0–40 m water depth. In addition, the high precision and accuracy of the sensor make it possible to use in the ocean observation field.

Key words

Ir/Ir(OH)x electrode pH value electroplating Newport Harbor California 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardizzone S, Carugati A, Trasatti S. 1981. Properties of thermally prepared iridium dioxide electrodes. J Electroanal Chem Interfacial Electrochem, 126(1–3): 287–292CrossRefGoogle Scholar
  2. Bates R G, Erickson W P. 1986. Thermodynamics of the dissociation of 2-aminopyridinium ion in synthetic seawater and a standard for pH in marine systems. J Solution Chem, 15(11): 891–901CrossRefGoogle Scholar
  3. Baur J E, Spaine T W. 1998. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide. J Electroanal Chem, 443(2): 208–216CrossRefGoogle Scholar
  4. Burke L D, Whelan D P. 1984. A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers. J Electroanal Chem Interfacial Electrochem, 162(1–2): 121–141CrossRefGoogle Scholar
  5. Chen Dongchu, Li Wenfang, Huang Jinying. 2007. Preparation of a tungsten oxide pH electrochemical sensor based on solid Ag/AgCl reference electrode. Chin J Sens Actuators, 20(7): 1483–1487Google Scholar
  6. Cheng Changming, Tian Xianqing, Guo Yong, et al. 2011. Large enhancement of sensitivity and a wider working range of glass pH electrode with amperometric and potentiometric responses. Electrochim Acta, 56(27): 9883–9886CrossRefGoogle Scholar
  7. Da Silva G M, Lemos S G, Pocrifka L A, et al. 2008. Development of low-cost metal oxide pH electrodes based on the polymeric precursor method. Anal Chim Acta, 616(1): 36–41CrossRefGoogle Scholar
  8. Das S, Mangwani N. 2015. Ocean acidification and marine microorganisms: responses and consequences. Oceanologia, 57(4): 349–361CrossRefGoogle Scholar
  9. Dickson A G. 1993a. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Res: Part I. Oceanogr Res Pap, 40(1): 107–118CrossRefGoogle Scholar
  10. Dickson A G. 1993b. The measurement of sea water pH. Mar Chem, 44(2–4): 131–142CrossRefGoogle Scholar
  11. Ding Qian, Pan Yiwen, Huang Yuanfeng, et al. 2015. The optimization of Ag/Ag2S electrode using carrier electroplating of nano silver particles and its preliminary application to offshore Kueishan Tao, Taiwan. Cont Shelf Res, 111: 262–267CrossRefGoogle Scholar
  12. Feely R A, Sabine C L, Lee K, et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682): 362–366CrossRefGoogle Scholar
  13. Fog A, Buck R P. 1984. Electronic semiconducting oxides as pH sensors. Sens Actuators, 5(2): 137–146CrossRefGoogle Scholar
  14. Gimmel P, Gompf B, Schmeisser D, et al. 1989. Ta2O5-gates of pHsensitive devices: comparative spectroscopic and electrical studies. Sens Actuators, 17(1–2): 195–202CrossRefGoogle Scholar
  15. Han Chenhua, Pan Yiwen, Ye Ying. 2009. CO2 microelectrode based on Zn-Al-LDH-ion carrier and its characterization. J Trop Oceanogr (in Chinese), 28(4): 35–41Google Scholar
  16. He Shichang, Zhang Yuanhui, Chen Liqi, et al. 2014. Advances in the studies of ocean acidification. Mar Sci (in Chinese), 38(6): 85–93Google Scholar
  17. Huang Wending, Cao H, Deb S, et al. 2011. A flexible pH sensor based on the iridium oxide sensing film. Sens Actuators: A. Phys, 169(1): 1–11CrossRefGoogle Scholar
  18. Huang Yuanfeng, Li Jun, Yin Tianya, et al. 2015. A novel all-solidstate ammonium electrode with polyaniline and copolymer of aniline/2, 5-dimethoxyaniline as transducers. J Electroanal Chem, 741: 87–92CrossRefGoogle Scholar
  19. Huang Xiaoyan, Liu Bo, Li Xue. 2005. Applications of titanium alloys in warship building. Southern Met (in Chinese), (6): 10–11, 33Google Scholar
  20. Kim T Y, Yang S. 2014. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sens Actuators: B. Chem, 196: 31–38CrossRefGoogle Scholar
  21. Kreider K G, Tarlov M J, Cline J P. 1995. Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sens ctuators: B. Chem, 28(3): 167–172CrossRefGoogle Scholar
  22. Kuo Limin, Chou Y C, Chen Kuanneng, et al. 2014. A precise pH microsensor using RF-sputtering IrO2 and Ta2O5 films on Pt-electrode. Sens Actuators: B. Chem, 193: 687–691CrossRefGoogle Scholar
  23. Maurya D K, Sardarinejad A, Alameh K. 2013. High-sensitivity pH sensor employing a sub-micron ruthenium oxide thin-film in conjunction with a thick reference electrode. Sens Actuators: A. Phys, 203: 300–303CrossRefGoogle Scholar
  24. McLaughlin K, Ahn J H, Litton R M, et al. 2007. Use of salinity mixing models to estimate the contribution of creek water fecal indicator bacteria to an estuarine environment: Newport Bay, California. Water Res, 41(16): 3595–3604CrossRefGoogle Scholar
  25. Olthuis W, Robben M A M, Bergveld P, et al. 1990. pH sensor properties of electrochemically grown iridium oxide. Sens Actuators: B. Chem, 2(4): 247–256CrossRefGoogle Scholar
  26. Pan Yiwen, Seyfried W E Jr. 2008. Experimental and theoretical constraints on pH measurements with an iridium oxide electrode in aqueous fluids from 25 to 175°C and 25 MPa. J Solution Chem, 37(8): 1051–1062CrossRefGoogle Scholar
  27. Prats-Alfonso E, Abad L, Casañ-Pastor N, et al. 2013. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron, 39(1): 163–169Google Scholar
  28. Steegstra P, Ahlberg E. 2012. Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim Acta, 76: 26–33CrossRefGoogle Scholar
  29. Tarlov M J, Semancik S, Kreider K G. 1990. Mechanistic and response studies of iridium oxide pH sensors. Sens Actuators: B. Chem, 1(1–6): 293–297CrossRefGoogle Scholar
  30. Wang Siru, Yin Kedong, Cai Weijun, et al. 2012. Advances in studies of ecological effects of ocean acidification. Acta Ecol Sinica (in Chinese), 32(18): 5859–5869CrossRefGoogle Scholar
  31. Whitfield M, Butler R A, Covington A K. 1985. The determination of pH in estuarine waters I. Definition of pH scales and the selection of buffers. Oceanol Acta, 8(4): 423–432Google Scholar
  32. Xie Zhong, Liu Yexiang. 1998. Reference electrode for electrochemical studies in fused chloride. Chin J Nonferrous Met (in Chinese), 8(4): 668–672Google Scholar
  33. Xu Bin, Zhang Weide. 2010. Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor. Electrochim Acta, 55(8): 2859–2864CrossRefGoogle Scholar
  34. Yamamoto K, Shi Guoyue, Zhou Tianshu, et al. 2003. Solid-state pH ultramicrosensor based on a tungstic oxide film fabricated on a tungsten nanoelectrode and its application to the study of endothelial cells. Anal Chim Acta, 480(1): 109–117CrossRefGoogle Scholar
  35. Yao Sheng, Wang Min, Madou M. 2001. A pH electrode based on melt-oxidized iridium oxide. J Electrochem Soc, 148(4): H29- H36Google Scholar
  36. Zhao Rongrong, Xu Meizhu, Wang Jian, et al. 2010. A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim Acta, 55(20): 5647–5651CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiao Zhang
    • 1
  • Ying Ye
    • 1
  • Yating Kan
    • 1
  • Yuanfeng Huang
    • 1
  • Jianjun Jia
    • 1
  • Yue Zhao
    • 1
  • Chen-Tung Arthur Chen
    • 1
    • 2
  • Huawei Qin
    • 3
  1. 1.Ocean CollegeZhejiang UniversityZhoushanChina
  2. 2.Institute of Marine Geology and ChemistryNational Sun Yat-sen UniversityTaiwanChina
  3. 3.School of Mechanical EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations