Advertisement

Acta Oceanologica Sinica

, Volume 36, Issue 5, pp 9–25 | Cite as

Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model

Article

Abstract

Mesoscale eddies (MEs) in the South China Sea (SCS) simulated by a quasi-global eddy-resolving ocean general circulation model are evaluated against satellite data during 1993–2007. The modeled ocean data show more activity than shown by the satellite data and reproduces more eddies in the SCS. A total of 345 (428) cyclonic eddies (CEs) and 330 (371) anti-cyclonic eddies (AEs) generated for satellite (model) data are identified during the study period, showing increase of ~24% and ~12% for the model data, respectively. Compared with eddies in satellite, the simulated eddies tend to have smaller radii, larger amplitudes, a slightly longer lifetime, faster movement and rotation speed, a slightly larger nonlinear properties (U/c) in the model. However, the spatial distribution of generated eddies appears to be inhomogeneous, with more CEs in the northern part of SCS and fewer AEs in the southern part. This is attributed to the exaggerated Kuroshio intrusion in the model because the small islands in the Luzon Strait are still not well resolved although the horizontal resolution reaches (1/10)°. The seasonal variability in the number and the amplitude of eddies generated is also investigated.

Key words

mesoscale eddy eddy-resolving ocean general circulation model South China Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography, 83(1–4): 117–123CrossRefGoogle Scholar
  2. Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatiotemporal patterns. Progress in Oceanography, 79(2–4): 106–119CrossRefGoogle Scholar
  3. Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216CrossRefGoogle Scholar
  4. Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606CrossRefGoogle Scholar
  5. Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans (1978–2012): 117(C5): doi: 10.1029/2011JC007724Google Scholar
  6. Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Ocean (1978–2012), 116 ( C 6 ): d o i: 10.1029/2010JC006716Google Scholar
  7. Chen Gengxin, Hou Yijun, Zhang Qilong, et al. 2010. The eddy pair off eastern Vietnam: interannual variability and impact on thermohaline structure. Continental Shelf Research, 30(7): 715–723CrossRefGoogle Scholar
  8. Chen Gengxin, Wang Dongxiao, Dong Changming, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Report, 5: 17416, doi: 10.1038/srep17416CrossRefGoogle Scholar
  9. Chen Gengxin, Xue Huijie, Wang Dongxiao, et al. 2013. Observed near-inertial kinetic energy in the Northwestern South China Sea, Journal of Geophysical Research: Ocean (1978–2012), 118(10): doi: 10.1002/jgrc.20371Google Scholar
  10. Cheng Xuhua, Qi Yiquan. 2010. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography, 66(1): 85–94CrossRefGoogle Scholar
  11. Chow C H, Liu Qinyu. 2012. Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea. Geophysical Research Letters, 39(2): doi: 10.1029/2011gl050230Google Scholar
  12. Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. 2014. An exceptional anticyclonic eddy in the South China Sea in 2010. Journal of Geophysical Research, 119(2): 881–897, doi: 10.1002/2013JC009314Google Scholar
  13. Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS- 1 and -2. Journal of Geophysical Research: Oceans (1978–2012), 105(C8): 19477–19498CrossRefGoogle Scholar
  14. Fang Guohong, Fang Wendong, Fang Yue, et al. 1998. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanographica Taiwanica, 37(1): 1–16Google Scholar
  15. Gan Jianping, Qu Tangdong. 2008. Coastal jet separation and associated flow variability in the southwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(1): 1–19CrossRefGoogle Scholar
  16. Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1): 150–155CrossRefGoogle Scholar
  17. Hallberg R. 2013. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modelling, 72: 92–103CrossRefGoogle Scholar
  18. Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography, 56(6): 607–624CrossRefGoogle Scholar
  19. Isern-Fontanet J, García-Ladona E, Font J. 2003. Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 20(5): 772–778CrossRefGoogle Scholar
  20. Isern-Fontanet J, García-Ladona E, Font J. 2006. Vortices of the Mediterranean Sea: an altimetric perspective. Journal of Physical Oceanography, 36(1): 87–103CrossRefGoogle Scholar
  21. Jia Yinglai, Liu Qinyu, Liu Wei. 2005. Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait. Journal of Oceanography, 61(6): 1017–1027CrossRefGoogle Scholar
  22. Large W G, Yeager S G. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note NCAR/TN-460+STR. Colorado: National Center for Atmospheric Research Boulder, 111Google Scholar
  23. Li Li, Nowlin W D, Su Jilan. 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 45(9): 1469–1482CrossRefGoogle Scholar
  24. Lin Xiayan, Dong Changming, Chen Dake, et al. 2015. Three-dimensional properties of mesoscale eddies in the south china sea based on eddy-resolving model output. Deep Sea Research Part I: Oceanographic Research Papers, 99: 46–64CrossRefGoogle Scholar
  25. Lin Pengfei, Wang Fang, Chen Yongli, et al. 2007. Temporal and spatial variation characteristics on eddies in the South China Sea: I. Statistical analyses. Haiyang Xuebao (in Chinese), 29(3): 14–22Google Scholar
  26. Liu Qinyu, Kaneko A, Su Jilan. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5): 753–762CrossRefGoogle Scholar
  27. Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012. The baseline evaluation of lasg/iap climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3): 318–329CrossRefGoogle Scholar
  28. Liu Xiaobing, Su Jilan. 1992. A reduced gravity model of the circulation in the South China Sea. Oceanologia et Limnologia Sinica (in Chinese), 23(2): 167–174Google Scholar
  29. Liu Hailong, Yu Yongqiang, Lin Pengfei, et al. 2014. High-Resolution LICOM. In: Zhou Tianjun, Yu Yongqiang, Liu Yimin, et al., eds. Flexible Global Ocean-Atmosphere-Land System Model. Berlin Heidelberg: Springer, 321–331CrossRefGoogle Scholar
  30. Metzger E J, Hurlburt H E. 2001. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography, 31(7): 1712–1732CrossRefGoogle Scholar
  31. Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geographical Research: Oceans (1978–2012), 116(C5): C05002Google Scholar
  32. Nencioli F, Dong Changming, Dickey T, et al. 2010. A vector geometry- based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579CrossRefGoogle Scholar
  33. Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3): 445–454CrossRefGoogle Scholar
  34. Petersen M R, Williams S J, Maltrud M E, et al. 2013. A three-dimensional eddy census of a high-resolution global ocean simulation. Journal of Geophysical Research: Oceans (1978–2012), 118(4): 1759–1774, doi: 10.002/jgrc.20155Google Scholar
  35. Qu Tangdong. 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 30(6): 1450–1460CrossRefGoogle Scholar
  36. Qu Tangdong, Mitsudera H, Yamagata T. 2000. Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research: Oceans (1978–2012), 105(C3): 6415–6424CrossRefGoogle Scholar
  37. Roeske F. 2001. An atlas of surface flues based on the ECMWF re-analysis: a climatological dataset to force global ocean general circulation models. Report No. 323. Hamburg: Max-Planck-Institut für Meteorologie, 31Google Scholar
  38. Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta, 22(1): 1–17CrossRefGoogle Scholar
  39. Souza J M A C, de Boyer Montégut C, Le Traon P Y. 2011. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Science, 7(3): 317–334CrossRefGoogle Scholar
  40. Wang Dongxiao, Chen Ju, Chen Rongyu, et al. 2004. Hydrographic and circulation characteristics in middle and southern South China Sea in summer, 2000. Oceanologia et Limnologia Sinica (in Chinese), 35(2): 97–109Google Scholar
  41. Wang Guihua, Chen Dake, Su Jilan. 2008a. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3): 726–732CrossRefGoogle Scholar
  42. Wang Liping, Koblinsky C J, Howden S. 2000. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep Sea Research Part I: Oceanographic Research Papers, 47(4): 681–708CrossRefGoogle Scholar
  43. Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121CrossRefGoogle Scholar
  44. Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008b. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935CrossRefGoogle Scholar
  45. Wang Qiang, Zeng Lili, Zhou Weidong, et al. 2015. Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. Journal of Geophysical Research: Oceans (1978–2012), 120(1): 517–532, doi: 10.1002/2014JC009814Google Scholar
  46. Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2–3): 273–294CrossRefGoogle Scholar
  47. Wu C R, Chiang T L. 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1575–1588CrossRefGoogle Scholar
  48. Wu C R, Shaw P T, Chao S Y. 1999. Assimilating altimetric data into a South China Sea model. Journal of Geophysical Research: Oceans (1978–2012), 104(C12): 29987–30005CrossRefGoogle Scholar
  49. Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans (1978–2012), 115 ( C 3 ), d o i: 10.1029/2009JC005657Google Scholar
  50. Yang Haijun, Liu Qinyu. 1998. The seasonal features of temperature distributions in the upper layer of the South China Sea. Oceanologia et Limnologia Sinica (in Chinese), 29(5): 501–507Google Scholar
  51. Yang Haiyuan, Wu Lixin, Liu Hailong, et al. 2013. Eddy energy sources and sinks in the South China Sea. Journal of Geophysical Research, 118(9): 4716–4726Google Scholar
  52. Yu Yongqiang, Liu Hailong, Lin Pengfei. 2012. A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results. Chinese Science Bulletin, 57(30): 3908–3916CrossRefGoogle Scholar
  53. Zhuang Wei, Xie Shangping, Wang Dongxiao, et al. 2010. Intraseasonal variability in sea surface height over the South China Sea. Journal of Geophysical Research: Oceans (1978–2012), 115(C4): doi: 10.1029/2009JC005647Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Baoxin Feng
    • 1
  • Hailong Liu
    • 2
  • Pengfei Lin
    • 2
  • Qi Wang
    • 1
  1. 1.College of Physical and Environmental OceanographyOcean University of ChinaQingdaoChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations