Acta Oceanologica Sinica

, Volume 36, Issue 5, pp 1–8 | Cite as

A fresh look at the deepwater overflow in the Luzon Strait

  • Yaohua Zhu
  • Junchuan Sun
  • Zexun Wei
  • Yonggang Wang
  • Guohong Fang
  • Tangdong Qu
Article

Abstract

On the basis of the latest version of a U.S. Navy generalized digital environment model (GDEM-V3.0) and World Ocean Atlas (WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that: (1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea (SCS); (2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness; (3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability; (4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait. Moreover, the deepwater overflow reaches its seasonal maximum in December (based on GDEM-V3.0) or in fall (October–December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest (3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.

Key words

Luzon Strait deepwater overflow seasonal variability South China Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer T P, Garcia H E, Locarnini R A, et al. 2014. 2013 world ocean atlas aids high-resolution climate studies. Eos, 95(41): 369–370CrossRefGoogle Scholar
  2. Carnes M R. 2009. Description and Evaluation of GDEM-V3.0, Tech Rep NRL/MR/7330–09–9165. Washington, D C. Nav Res Lab, 21.Google Scholar
  3. Fang Guohong, Wang Yonggang, Wei Zexun, et al. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn Atmos Oceans, 47(1–3): 55–72CrossRefGoogle Scholar
  4. Lan Jian, Wang Yu, Cui Fengjuan, et al. 2015. Seasonal variation in the South China Sea deep circulation. J Geophys Res: Oceans, 120(3): 1682–1690, doi: 10.1002/2014JC010413CrossRefGoogle Scholar
  5. Nitani H. 1972. Beginning of the Kuroshio. In: Stommel H, Yashida K, eds. Kuroshio: Physical Aspects of the Japan Current. Seattle: University of Washington Press, 129–163Google Scholar
  6. Qu Tangdong, Girton J B, Whitehead J A. 2006. Deepwater overflow through Luzon Strait. J Geophys Res, 111(C1): C01002, doi: 10.1029/2005JC003139CrossRefGoogle Scholar
  7. Qu Tangdong, Mitsudera H, Yamagata T. 1998. On the western boundary currents in the Philippine Sea. J Geophys Res, 103(C4): 7537–7548CrossRefGoogle Scholar
  8. Qu Tangdong, Mitsudera H, Yamagata T. 2000. Intrusion of the North Pacific waters into the South China Sea. J Geophys Res, 105(C3): 6415–6424CrossRefGoogle Scholar
  9. Qu Tangdong, Song Y T, Yamagata T. 2009. An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate. Dyn Atmos Oceans, 47(1–3): 3–14, doi: 10.1016/j.dynatmoce.2008.05.001CrossRefGoogle Scholar
  10. Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956–1962CrossRefGoogle Scholar
  11. Stommel H, Arons A B. 1959–1960. On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res (1953), 6: 217–233CrossRefGoogle Scholar
  12. Teague W J, Carron M J, Hogan P J. 1990. A comparison between the generalized digital environmental model and Levitus climatologies. J Geophys Res, 95(C5): 7167–7183CrossRefGoogle Scholar
  13. Tian Jiwei, Yang Qingxuan, Liang Xinfeng, et al. 2006. Observation of Luzon Strait transport. Geophys Res Lett, 33(19): L19607, doi: 10.1029/2006GL026272CrossRefGoogle Scholar
  14. Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr, 39: 3191–3203, doi: 10.1175/2009jpo3899.1CrossRefGoogle Scholar
  15. Wang Joe. 1986. Observation of abyssal flows in the northern South China Sea. Acta Oceanogr Taiwan, 16: 36–45Google Scholar
  16. Wang Guihua, Xie Shangping, Qu Tangdong, et al. 2011. Deep South China Sea circulation. Geophys Res Lett, 38(5): L05601, doi: 10.1029/2010GL046626CrossRefGoogle Scholar
  17. Whitehead J A. 1989. Internal hydraulic control in rotating fluids—applications to oceans. Geophys Astrophys Fluid Dyn, 48(1–3): 169–192CrossRefGoogle Scholar
  18. Whitehead J A. 1998. Topographic control of oceanic flows in deep passages and straits. Rev Geophys, 36(3): 423–440, doi: 10.1029/98RG01014CrossRefGoogle Scholar
  19. Wyrtki K. 1961. Physical Oceanography of the Southeast Asian Waters, Naga Rep 2. Scripps Inst of Oceanogr, 195Google Scholar
  20. Xie Qiang, Xiao Jin’gen, Wang Dongxiao, et al. 2013. Analysis of deeplayer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chin Sci Bull, 58(32): 4000–4011, doi: 10.1007/s11434–013-5791–5CrossRefGoogle Scholar
  21. Xu Fanghua, Oey L Y. 2014. State analysis using the local ensemble transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn, 64(6): 905–923, doi: 10.1007/s10236–014-0720-yCrossRefGoogle Scholar
  22. Yang Qingxuan, Tian Jiwei, Zhao Wei. 2010. Observation of Luzon Strait transport in summer 2007. Deep-Sea Res: I. Oceanogr Res Pap, 57(5): 670–676CrossRefGoogle Scholar
  23. Zhang Zhengguang, Zhao Wei, Liu Qinyu. 2010. Sub-seasonal variability of Luzon Strait transport in a high resolution global model. Acta Oceanologica Sinica, 29(3): 9–17, doi: 10.1007/s13131–010-0032–0CrossRefGoogle Scholar
  24. Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2015. Spatial structure and temporal variability of the zonal flow in the Luzon Strait. J Geophys Res: Oceans, 120(2): 759–776, doi: 10.1002/2014JC010308CrossRefGoogle Scholar
  25. Zhao Wei, Zhou Chun, Tian Jiwei, et al. 2014. Deep water circulation in the Luzon Strait. J Geophys Res: Oceans, 119(2): 790–804, doi: 10.1002/2013JC009587CrossRefGoogle Scholar
  26. Zhou Chun, Zhao Wei, Tian Jiwei, et al. 2014. Variability of the deepwater overflow in the Luzon Strait. J Phys Oceanogr, 44(11): 2972–2986CrossRefGoogle Scholar
  27. Zhu Yaohua, Fang Guohong, Wei Zexun, et al. 2016. Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2.4. J Geophys Res: Oceans, 121(5): 3090–3105, doi: 10.1002/2015JC011443CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yaohua Zhu
    • 1
    • 2
  • Junchuan Sun
    • 1
    • 2
  • Zexun Wei
    • 1
    • 2
  • Yonggang Wang
    • 1
    • 2
  • Guohong Fang
    • 1
    • 2
  • Tangdong Qu
    • 3
  1. 1.Key Laboratory of Marine Science and Numerical Modeling, The First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations