Skip to main content

Advertisement

Log in

Nematode community structure in relation to metals in the southern of Caspian Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Spatial distribution and structure of nematode assemblages in coastal sediments of the southern part of the Caspian Sea were studied in relation to environmental factors. By considering metals, organic matter, Shannon diversity index (H), maturity index (MI) and trophic diversity (ITD), ecological quality status of sediment was also determined. Fifteen nematode species belonging to eleven genera were identified at the sampling sites. Average density of nematode inhabiting in sediment of the studied area was 139.78±98.91 (ind. per 15.20 cm2). According to redundancy analysis (RDA), there was high correlation between metals and some species. Based on biological indicators, the studied area had different environmental quality. Generally, chemical and biological indices showed different results while biological indices displayed similar results in more sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrantes A, Pinto F, Moreira M H. 1999. Ecology of polychaete Nereis diversicolor, in the Cannal de Mira (Ria de Averio, Portugal). population dynamics, production and oogenic cycle. Acta Oecologica, 20(4): 267–283

    Article  Google Scholar 

  • Armenteros M, Pérez-García J A, Ruiz-Abierno A, et al. 2010. Effects of organic enrichment on nematode assemblages in a microcosm experiment. Mar Environ Res, 70(5): 374–382

    Article  Google Scholar 

  • Armenteros M, Ruiz-Abierno A, Fernández-Garcés R, et al. 2009. Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuar Coast Shelf Sci, 85(2): 179–189

    Article  Google Scholar 

  • ASTM. 2013. D4698–92, 2013, Standard Practice for Total Digestion of Sediment Samples for Chemical Analysis of Various Metals. West Conshohocken, PA: ASTM International. www.astm.org

    Google Scholar 

  • Austen M C, McEvoy A J. 1997. The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J Exp Mar Biol Ecol, 211(2): 247–261

    Article  Google Scholar 

  • Austen M C. 2004. Natural nematode communities are useful tools to address ecological and applied questions. Nematol Monogr Perspect, 2: 1–17

    Google Scholar 

  • Austen M C, Somerfield P J A. 1997. Community level sediment bioassay applied to an estuarine heavy metal gradient. Mar Environ Res, 43: 315–328

    Article  Google Scholar 

  • Bengtsson B E, Bergström B. 1987. A flowthrough fecundity test with Nitocra spinipes (harpacticoidea crustacea) for aquatic toxicity. Ecotoxicol Environ Saf, 14(3): 260–268

    Article  Google Scholar 

  • Beyrem H, Aissa P. 2000. Les nématodes libres, organismes-sentinelles de l’évolution des concentrations d’hydrocarbures dans la baie de Bizerte (Tunisie). Cah Biol Mar, 41(3): 329–342

    Google Scholar 

  • Bianchelli S, Gambi C, Pusceddu A, et al. 2008. Trophic conditions and meiofaunal assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chem Ecol, 24(S1): 101–109

    Article  Google Scholar 

  • Birshtein Y A, Vinogradov L G, Kondakov N N, et al. 1968. Atlas of Invertebrates of the Caspian Sea. Moscow: Pishchevaya Promyshlennost

    Google Scholar 

  • Bongers T. 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14–19

    Article  Google Scholar 

  • Bongers T, Alkemade R, Yeates G W. 1991. Interpretation of disturbance- induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Mar Ecol Prog Ser, 76: 135–142

    Article  Google Scholar 

  • Bongers T, van de Haar J. 1990. On the potential of basing an ecological typology of aquatic sediments on the nematode fauna: an example from the river Rhine. Hydrobiol Bull, 24(1): 37–45

    Article  Google Scholar 

  • Boucher G. 1980. Impact of Amoco Cadiz oil spill on intertidal and sublittoral meiofauna. Mar Poll Bull, 11(4): 95–101

    Article  Google Scholar 

  • Boufahja F, Hedfi A, Amorri J, et al. 2011. An assessment of the impact of chromium-amended sediment on a marine nematode assemblage using microcosm bioassays. Biol Trace Elem Res, 142(2): 242–255

    Article  Google Scholar 

  • Castro P, Huber M. 2003. Marine Biology. 4th ed. Boston: McGraw Hill

    Google Scholar 

  • Chesunov A V. 1980. New data on free-living nematodes of the superfamily Monhysteroidea in the Caspian Sea. Zool Zh, 59(7): 973–985

    Google Scholar 

  • Clarke K R, Warwick R M. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Plymouth: PRIMER-E Ltd

    Google Scholar 

  • Danovaro R, Fabiano M, Vincx M. 1995. Meiofauna response to the Agip Abruzzo oil spill in subtidal sediments of the Ligurian Sea. Mar Poll Bull, 30(2): 133–145

    Article  Google Scholar 

  • Danovaro R, Gambi C, Dell’Anno A, et al. 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol, 18(1): 1–8

    Article  Google Scholar 

  • De Beer D, Wenzhöfer F, Ferdelman T G, et al. 2005. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr, 50(1): 113–127

    Article  Google Scholar 

  • Essink K, Keidel H. 1998. Changes in estuarine nematode communities following a decrease of organic pollution. Aquat Ecol, 32(3): 195–202

    Article  Google Scholar 

  • Fonseca G, Maria T F, Kandratavicius N, et al. 2014. Testing for nematode- granulometry relationships. Mar Biodiv, 44(3): 435–443

    Article  Google Scholar 

  • Fraschetti S, Gambi C, Giangrande A, et al. 2006. Structural and functional response of meiofauna rocky assemblages to sewage pollution. Mar Pollut Bull, 52(5): 540–548

    Article  Google Scholar 

  • Gambi C, Danovaro R. 2016. Biodiversity and life strategies of deepsea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean). Deep Sea Res I Oceanogr Res Papers, 108: 13–22

    Article  Google Scholar 

  • Giere O. 2009. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments. 2nd ed. Berlin Heidelberg: Springer-Verlag

    Google Scholar 

  • Gyedu-Ababio T K, Baird D. 2006. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf, 63(3): 443–450

    Article  Google Scholar 

  • Hedfi A, Mahmoudi E, Beyrem H, et al. 2008. Réponse d’une communauté de nématodes libres marins à une contamination par le cuivre: étude microcosmique. Bull de la Soc Zool de France, 133(1–3): 97–106

    Google Scholar 

  • Hedfi A, Mahmoudi E, Boufahja F, et al. 2007. Effects of increasing levels of nickel contamination on structure of offshore nematode communities in experimental microcosms. Bull Environ Contam Toxicol, 79(3): 345–349

    Article  Google Scholar 

  • Heip C H R, Vincx M, Vranken G. 1985. The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev, 23: 399–489

    Google Scholar 

  • Horowitz A J, Elrick K A. 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl Geochem, 2: 437–451

    Article  Google Scholar 

  • Howell R. 1983. Heavy metals in marine nematodes: uptake, tissue distribution and loss of copper and zinc. Mar Pollut Bull, 14(7): 263–268

    Article  Google Scholar 

  • Jensen P. 1987. Feeding ecology of free-living aquatic nematodes. Mar Ecol Prog Ser, 35: 187–196

    Article  Google Scholar 

  • Leduc D, Nodder S D, Berkenbusch K, et al. 2015. Effect of core surface area and sediment depth on estimates of deep-sea nematode genus richness and community structure. Mar Biodiv, 45(3): 349–356

    Article  Google Scholar 

  • Lehtinen K J, Bengtsson B E, Bergstrom B. 1984. The toxicity of effluents from a TiO2 plant to the harpacticoid copepod Nitocra spinipes Boeck. Mar Environ Res, 12(4): 273–283

    Article  Google Scholar 

  • Lepš J, ŠMilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge: Cambridge University Press

    Google Scholar 

  • Long E R, MacDonald D D, Smith S L, et al. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag, 19(1): 81–97

    Article  Google Scholar 

  • Long E R, MacDonald D D. 1998. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess Int J, 4(5): 1019–1039

    Article  Google Scholar 

  • MacDonald D D, Carr R S, Calder F D, et al. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4): 253–278

    Article  Google Scholar 

  • Mahmoudi E, Beyrem H, Baccar L, et al. 2002. Response of free-living Nematodes to the quality of water and sediment at Bou Chrara Lagoon (Tunisia) during winter 2000. Mediterr Mar Sci, 3(2): 133–146

    Article  Google Scholar 

  • Mahmoudi E, Essid E, Beyrem H, et al. 2007. Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol, 343(2): 217–226

    Article  Google Scholar 

  • Maria T F, Paiva P, Vanreusel A, et al. 2013. The relationship between sandy beach nematodes and environmental characteristics in two Brazilian sandy beaches (Guanabara Bay, Rio de Janeiro). An Acad Bras Ciênc, 85(1): 257–270

    Article  Google Scholar 

  • McCave I N. 1984. Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res, 31: 329–352

    Article  Google Scholar 

  • Millward R N, Grant A. 1995. Assessing the impact of copper on nematode communities from a chronically metal-enriched estuary using pollution-induced community tolerance. Mar Pollut Bull, 30(11): 701–706

    Article  Google Scholar 

  • Mirto S, La Rosa T, Gambi C, et al. 2002. Nematode community response to fish-farm impact in the western Mediterranean. Environ Pollut, 116(2): 203–214

    Article  Google Scholar 

  • Mirzajani A R, Yosefzad E, Sayad Rahim M, et al. 2003. Investigation on meiofauna and substrate characteristic in the southern Caspian Sea (Guilen province). Iran Sci Fish J, 11(4): 119–132

    Google Scholar 

  • Moreno M, Ferrero T J, Gallizia I, et al. 2008a. An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar Coast Shelf Sci, 77(4): 565–576

    Article  Google Scholar 

  • Moreno M, Semprucci F, Vezzulli L, et al. 2011. The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic, 11(2): 328–336

    Article  Google Scholar 

  • Moreno M, Vezzulli L, Marin V, et al. 2008b. The use of meiofauna diversity as an indicator of pollution in harbours. ICES J Mar Sci, 65(8): 1428–1435

    Article  Google Scholar 

  • Neilson R, Boag B, Palmer L F. 1996. The effect of environment on marine nematode assemblages as indicated by the maturity index. Nematologica, 42(2): 232–242

    Article  Google Scholar 

  • Riemann F, Schrage M. 1978. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia, 34(1): 75–88

    Article  Google Scholar 

  • Riyazi B. 2002. Investigation on benthos invertebrates of the Gomishan wetland. Iran J Nat Res, 55(2): 211–223

    Google Scholar 

  • Somerfield P J, Gee J M, Warwick R M. 1994. Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Mar Ecol Prog Ser, 105: 79–88

    Article  Google Scholar 

  • Taheri M, Grego M, Riedel B, et al. 2015. Patterns in nematode community during and after experimentally induced anoxia in the northern Adriatic Sea. Mar Environ Res, 110: 110–123

    Article  Google Scholar 

  • Tchesunov A V. 1981. Free-living nematodes of the group of Theristus flevensis (Monhysterida) species in the Caspian sea. Byulleten’ Mosk Obshch Isput Prir (Otd Biol), 86: 63–70

    Google Scholar 

  • Ter Braak C J F, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’S Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York: Microcomputer Power

    Google Scholar 

  • Tietjen J H. 1980. Population structure and species composition of the free-living nematodes inhabiting sands of the New York Bight apex. Estuar Coas Shelf Sci, 10(1): 61–73

    Article  Google Scholar 

  • Vanaverbeke J, Merckx B, Degraer S, et al. 2011. Sediment-related distribution patterns of nematodes and macrofauna: two sides of the benthic coin?. Mar Environ Res, 71(1): 31–40

    Article  Google Scholar 

  • Vanaverbeke J, Soetaert K, Vincx M. 2004. Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Mar Ecol Prog Ser, 273: 139–146

    Article  Google Scholar 

  • Verriopoulos G, Moraitou-Apostolopoulou M. 1989. Toxicity of zinc to the marine copepod Tisbe holothuriae; the importance of the food factor. Arch Hydrobiol, 114(3): 457–463

    Google Scholar 

  • Vranken G, Tiré C, Heip C. 1989. Effect of temperature and food on hexavalent chromium toxicity to the marine nematode Monhystera disjuncta. Mar Environ Res, 27(2): 127–136

    Article  Google Scholar 

  • Warwick R M. 1988. The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Mar Pollut Bull, 19(6): 259–268

    Article  Google Scholar 

  • Wentworth C K. 1992. A scale of grade and class terms for clastic sediments. J Geol, 30(5): 377–392

    Article  Google Scholar 

  • Wieser W. 1953. Die Beziehung zwischen Mundhoehlengestalt, Ernaehrugsweise und Vorkommen bei freilebenden marinen Nematoden. Zool Arch, 4: 439–484

    Google Scholar 

  • Zenkevich L A. 1963. Biology of the Seas of the U.S.S.R. Botcharskaya S, trans. New York: Interscience Publishers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Darvish Bastami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastami, K.D., Taheri, M., Foshtomi, M.Y. et al. Nematode community structure in relation to metals in the southern of Caspian Sea. Acta Oceanol. Sin. 36, 79–86 (2017). https://doi.org/10.1007/s13131-017-1051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-017-1051-x

Keywords

Navigation