Skip to main content

Simulations of dissolved oxygen concentration in CMIP5 Earth system models

Abstract

The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models (ESMs) from the historical emission driven experiment of CMIP5 (Phase 5 of the Climate Model Intercomparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature (SST), with both globally-averaged error and root mean square error (RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones (OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation (MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW) and North Pacific Intermediate Water (NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively. Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.

This is a preview of subscription content, access via your institution.

References

  • Assmann K M, Bentsen M, Segschneider J, et al. 2010. An isopycnic ocean carbon cycle model. Geoscientific Model Development, 3(1): 143–167

    Article  Google Scholar 

  • Aumont O, Bopp L. 2006. Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20(2): GB2017

    Article  Google Scholar 

  • Bao Ying, Qiao Fangli, Song Zhenya. 2012. Historical simulation and twenty-first century prediction of oceanic CO2 sink and pH change. Acta Oceanologica Sinica, 31(5): 87–97

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard J B, et al. 2012. The Norwegian Earth System Model, NorESM1-M-Part 1: description and basic evaluation. Geoscientific Model Development, 5(3): 2843–2931

    Article  Google Scholar 

  • Cabré A, Marinov I, Bernardello R, et al. 2015. Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences, 12(18): 5429–5454, doi: 10.5194/bg-12-5429-2015

    Article  Google Scholar 

  • Cocco V, Joos F, Steinacher M, et al. 2013. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences, 10(3): 1849–1868, doi: 10.5194/bg-10-1849-2013

    Article  Google Scholar 

  • Collins W J, Bellouin N, Doutriaux-Boucher M, et al. 2011. Development and evaluation of an Earth-system model-HadGEM2. Geoscientific Model Development, 4(4): 1051–1075, doi: 10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Dufresne J L, Foujols M A, Denvil S, et al. 2013. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 40(9–10): 2123–2165, doi: 10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Dunne J P, John J G, Adcroft A J, et al. 2012. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. Journal of Climate, 25(19): 6646–6665, doi: 10.1175/jcli-d-11-00560.1

    Google Scholar 

  • Dunne J P, John J G, Shevliakova E, et al. 2013. GFDL’s ESM2 global coupled climate-carbon earth system models: Part II: carbon system formulation and baseline simulation characteristics. Journal of Climate, 26(7): 2247–2267, doi: 10.1175/jcli-d-12-00150.1

    Article  Google Scholar 

  • Emerson S, Watanabe Y W, Ono T, et al. 2004. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. Journal of Oceanography, 60(1): 139–147

    Article  Google Scholar 

  • Garcia H E, Locarnini R A, Boyer T P, et al. 2010. World Ocean Atlas 2009 Volume 3: dissolved oxygen, apparent oxygen utilization, and oxygen saturation. In: Levitus S, ed. NOAA Atlas NESDIS 70. Washington D C, USA: U S Government Printing Office

    Google Scholar 

  • Gent P R, Danabasoglu G, Donner L J, et al. 2011. The community climate system model version 4. Journal of Climate, 24(19): 4973–4991, doi: 10.1175/2011jcli4083.1

    Article  Google Scholar 

  • Halloran P R, Bell T G, Totterdell I J. 2010. Can we trust empirical marine DMS parameterisations within projections of future climate?. Biogeosciences, 7(5): 1645–1656

    Article  Google Scholar 

  • Helm K P, Bindoff N L, Church J A. 2011. Observed decreases in oxygen content of the global ocean. Geophysical Research Letters, 38(23): L23602

    Article  Google Scholar 

  • Ilyina T, Six K D, Segschneider J, et al. 2013. Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system Model in different CMIP5 experimental realizations. Journal of Advance in Modeling Earth Systems, 5(2): 287–315, doi: 10.1029/2012MS000178

    Article  Google Scholar 

  • Jungclaus J H, Fischer N, Haak H, et al. 2013. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. Journal of Advances in Modeling Earth System, 5(2): 422–446

    Article  Google Scholar 

  • Keeling R F, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2(1): 199–229

    Article  Google Scholar 

  • Kriest I, Oschlies A, Khatiwala S. 2012. Sensitivity analysis of simple global marine biogeochemical models. Global Biogeochemical Cycles, 26(2): GB2029, doi: 10.1029/2011GB004072

    Article  Google Scholar 

  • McCreary Jr J P, Yu Zuojun, Hood R R, et al. 2013. Dynamics of the Indian-Ocean oxygen minimum zones. Progress in Oceanography, 112–113: 15–37

    Article  Google Scholar 

  • Moore J K, Doney S C, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 18(4): GB4028

    Article  Google Scholar 

  • Morrison J M, Codispoti L A, Smith S L, et al. 1999. The oxygen minimum zone in the Arabian Sea during 1995. Deep Sea Research Part II: Topical Studies in Oceanography, 46(8–9): 1903–1931

    Article  Google Scholar 

  • Najjar R G, Jin X, Louanchi F, et al. 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from Phase II of the Ocean Carboncycle Model Intercomparison Project (OCMIP-2). Global Biogeochemical Cycles, 21(3): GB3007

    Article  Google Scholar 

  • Oschlies A, Schulz K G, Riebesell U, et al. 2008. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochemical Cycles, 22(4): GB4008

    Article  Google Scholar 

  • Qiao Fangli, Song Zhenya, Bao Ying, et al. 2013. Development and evaluation of an earth system model with surface gravity waves. Journal of Geophysical Research (Oceans), 118(9): 4514–4524, doi: 10.1002/jgrc.20327

    Article  Google Scholar 

  • Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): doi: 10.1029/2004GL019824

    Google Scholar 

  • Séférian R, Bopp L, Gehlen M, et al. 2013. Skill assessment of three earth system models with common marine biogeochemistry. Climate Dynamics, 40(9–10): 2549–2573

    Article  Google Scholar 

  • Srokosz M A, Bryden H. L. 2015. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science, 348(6241): 1255575

    Article  Google Scholar 

  • Stramma L, Johnson G C, Sprintall J, et al. 2008. Expanding oxygenminimum zones in the tropical oceans. Science, 320(5876): 655–658

    Article  Google Scholar 

  • Taylor K E, Balaji V, Hankin S, et al. 2011. CMIP5 Data Reference Syntax (DRS) and controlled vocabularies (Program for Climate Model Diagnosis and Intercomparison (PCMDI)). http://cmippcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf [2011-03-09/2011-12-27]

    Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498

    Article  Google Scholar 

  • Tsujino H, Hirabara M, Nakano H, et al. 2011. Simulating present climate of the global ocean-ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. Journal of Oceanography, 67(4): 449–479

    Article  Google Scholar 

  • Whitney F A, Freeland H J, Robert M. 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Progress in Oceanography, 75(2): 179–199

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and also thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model outputs. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchun Li.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41306029; the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2013T01 and 2014G25.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Li, Y. Simulations of dissolved oxygen concentration in CMIP5 Earth system models. Acta Oceanol. Sin. 35, 28–37 (2016). https://doi.org/10.1007/s13131-016-0959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0959-x

Key words

  • dissolved oxygen
  • CMIP5 Earth system model
  • meridional overturning circulation
  • particulate organic carbon flux