Skip to main content
Log in

The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Based on the Simple Ocean Data Assimilation (SODA) products, we study the mean properties and variations of the Southern Hemisphere subpolar gyres (SHSGs) in this paper. The results show that the gyre strengths in the SODA estimates are (55.9±9.8)×106 m3/s for the Weddell Gyre (WG), (37.0±6.4)×106 m3/s for the Ross Gyre (RG), and (27.5±8.2)×106 m3/s for the Australian-Antarctic Gyre (AG), respectively. There exists distinct connectivity between the adjacent gyres and then forms an oceanic super gyre structure in the southern subpolar oceans. And the interior exchanges are about (8.0±3.2)×106 m3/s at around 70°E and (4.3±3.1)×106 m3/s at around 140°E. The most pronounced variation for all three SHSGs occurs on the seasonal time scale, with generally stronger (weaker) SHSGs during austral winter (summer). And the seasonal changes of the gyre structures show that the eastern boundary of the WG and AG extends considerably further east during winter and the interior exchange in the super gyre structure increases accordingly. The WG and RG also show significant semi-annual changes. The correlation analyses confirm that the variations of the gyre strengths are strongly correlated with the changes in the local wind forcing on the semi-annual and seasonal time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki S, Fujii N, Ushio S, et al. 2008. Deep western boundary current and southern frontal systems of the Antarctic Circumpolar Current southeast of the Kerguelen Plateau. Journal of Geophysical Research, 113(C8): 2092–2112

    Article  Google Scholar 

  • Aoki S, Sasai Y, Sasaki H, et al. 2010. The cyclonic circulation in the Australian-Antarctic basin simulated by an eddy-resolving general circulation model. Ocean Dynamics, 60(3): 743–757

    Article  Google Scholar 

  • Assmann K M, Timmermann R. 2005. Variability of dense water formation in the Ross Sea. Ocean Dynamics, 55(2): 68–87

    Article  Google Scholar 

  • Beckmann A, Hellmer H H, Timmermann R. 1999. A numerical model of the Weddell Sea: large-scale circulation and water mass distribution. Journal of Geophysical Research, 104(C10): 23375–23391

    Article  Google Scholar 

  • Bindoff N L, Rosenberg M A, Warner M J. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Research Part II: Topical Studies in Oceanography, 47(12–13): 2299–2326

    Article  Google Scholar 

  • Carton J A, Giese B S, Grodsky S A. 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research: Oceans, 110(C9): doi: 10.1029/2004JC002817

    Google Scholar 

  • Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8): 2999–3017

    Article  Google Scholar 

  • Chu P C, Fan Chenwu. 2007. An inverse model for calculation of global volume transport from wind and hydrographic data. Journal of Marine Systems, 65(1–4): 376–399

    Article  Google Scholar 

  • Cisewski B, Strass V H, Leach H. 2011. Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006. Deep Sea Research Part I: Oceanographic Research Papers, 58(2): 186–199

    Article  Google Scholar 

  • Commodari V, Pierini S. 1999. A wind and boundary driven circulation model of the Ross Sea. In: Spezie G, Manzella G M R, eds. Oceanography of the Ross Sea Antarctica. Milano: Springer, 135–144

    Chapter  Google Scholar 

  • Couldrey M P, Jullion L, Garabato A C N, et al. 2013. Remotely induced warming of Antarctic Bottom Water in the eastern Weddell Gyre. Geophysical Research Letters, 40(11): 2755–2760

    Article  Google Scholar 

  • Dellnitz M, Froyland G, Horenkamp C, et al. 2009. Seasonal variability of the subpolar gyres in the Southern Ocean: a numerical investigation based on transfer operators. Nonlinear Processes in Geophysics, 16(6): 655–664

    Article  Google Scholar 

  • Drucker R, Martin S, Kwok R. 2011. Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophysical Research Letters, 38(17): L17502, 752–767

    Article  Google Scholar 

  • Duan Yongliang, Hou Yijun, Liu Hongwei, et al. 2013. The water mass variability and southward shift of the Southern Hemisphere mid-depth supergyre. Acta Oceanologica Sinica, 32(11): 74–81

    Article  Google Scholar 

  • Fahrbach E, Hoppema M, Rohardt G, et al. 2011. Warming of deep and abyssal water masses along the Greenwich Meridian on decadal time scales: the Weddell Gyre as a heat buffer. Deep Sea Research Part II: Topical Studies in Oceanography, 58(25–26): 2509–2523

    Article  Google Scholar 

  • Garabato A C N, Williams A P, Bacon S. 2014. The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Progress in Oceanography, 120: 41–78

    Article  Google Scholar 

  • Gordon A L, Martinson D G, Taylor H W. 1981. The wind-driven circulation in the Weddell-Enderby Basin. Deep Sea Research Part A: Oceanographic Research Papers, 28(2): 151–163

    Article  Google Scholar 

  • Gouretski V. 1999. The large-scale thermohaline structure of the Ross Gyre. In: Spezie G, Manzella G M R. Oceanography of the Ross Sea Antarctica. Milano: Springer, 77–100

    Chapter  Google Scholar 

  • Johns T C, Durman C F, Banks H T, et al. 2006. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. Journal of Climate, 19(7): 1327–1353

    Article  Google Scholar 

  • Jullion L, Jones S C, Garabato A C N, et al. 2010. Wind-controlled export of Antarctic Bottom Water from the Weddell Sea. Geophysical Research Letters, 37(9): 493–533

    Article  Google Scholar 

  • Jullion L, Garabato A C N, Bacon S, et al. 2014. The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation. Journal of Geophysical Research, 119(6): 3357–3377

    Google Scholar 

  • Klatt O, Fahrbach E, Hoppema M, et al. 2005. The transport of the Weddell Gyre across the Prime Meridian. Deep Sea Research Part II: Topical Studies in Oceanography, 52(3–4): 513–528

    Article  Google Scholar 

  • Liu Hongwei, Zhang Qilong, Duan Yongliang, et al. 2011. The threedimensional structure and seasonal variation of the north Pacific meridional overturning circulation. Acta Oceanologica Sinica, 30(3): 33–42

    Article  Google Scholar 

  • Mathiot P, Goosse H, Fichefet T, et al. 2011. Modelling the seasonal variability of the Antarctic Slope Current. Ocean Science, 7(4): 455–470

    Article  Google Scholar 

  • Mazloff M R, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography, 40(5): 880–899

    Article  Google Scholar 

  • McCartney M S, Donohue K A. 2007. A deep cyclonic gyre in the Australian-Antarctic Basin. Progress in the Oceanography, 75(4): 675–750

    Article  Google Scholar 

  • Meijers A J S, Klocker A, Bindoff N L, et al. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep Sea Research Part II: Topical Studies in Oceanography, 57(9–10): 723–737

    Article  Google Scholar 

  • Meredith M P, Garabato A C N, Gordon A L, et al. 2008. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005. Journal of Climate, 21(13): 3327–3343

    Article  Google Scholar 

  • Núñez-Riboni I, Fahrbach E. 2009. Seasonal variability of the Antarctic Coastal Current and its driving mechanisms in the Weddell Sea. Deep Sea Research Part I: Oceanographic Research Papers, 56(11): 1927–1941

    Article  Google Scholar 

  • Orsi A H, Nowlin Jr W D, Whitworth III T. 1993. On the circulation and stratification of the Weddell Gyre. Deep Sea Research Part I: Oceanographic Research Papers, 40(1): 169–203

    Article  Google Scholar 

  • Park Y H, Vivier F, Roquet F, et al. 2009. Direct observations of the ACC transport across the Kerguelen Plateau. Geophysical Research Letters, 36(18): L18603 252–260

    Article  Google Scholar 

  • Purkey S G, Johnson G C. 2010. Warming of global abyssal and deep southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. Journal of Climate, 23(23): 6336–6351

    Article  Google Scholar 

  • Reid J L. 1997. On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Progress in Oceanography, 39(4): 263–352

    Article  Google Scholar 

  • Rickard G J, Roberts M J, Williams M J M, et al. 2010. Mean circulation and hydrography in the Ross Sea sector, Southern Ocean: representation in numerical models. Antarctic Science, 22(5): 533–558

    Article  Google Scholar 

  • Rintoul S R. 2007. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophysical Research Letters, 34(6): 125–141

    Article  Google Scholar 

  • Rodehacke C B, Hellmer H H, Beckmann A, et al. 2007. Formation and spreading of Antarctic deep and bottom waters inferred from a chlorofluorocarbon (CFC) simulation. Journal of Geophysical Research: Oceans, 112(C9): 244–245

    Article  Google Scholar 

  • Roquet F, Park Y H, Guinet C, et al. 2009. Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals. Journal of Marine Systems, 78(3): 377–393

    Article  Google Scholar 

  • Russell J L, Stouffer R J, Dixon K W. 2006. Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. Journal of Climate, 19(18): 4560–4575

    Article  Google Scholar 

  • Schröder M, Fahrbach E. 1999. On the structure and the transport of the eastern Weddell Gyre. Deep Sea Research Part II: Topical Studies in Oceanography, 46(1–2): 501–527

    Article  Google Scholar 

  • Sen Gupta A, Santoso A, Taschetto A S, et al. 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. Journal of Climate, 22(11): 3047–3078

    Article  Google Scholar 

  • Shenoi S S C, Shankar D, Shetye S R. 2005. On the accuracy of the simple ocean data assimilation analysis for estimating heat budgets of the near-surface Arabian Sea and Bay of Bengal. Journal of Physical Oceanography, 35(3): 395–400

    Article  Google Scholar 

  • Sultan E, Mercier H, Pollard R T. 2007. An inverse model of the large scale circulation in the South Indian Ocean. Progress in Oceanography, 74(1): 71–94

    Article  Google Scholar 

  • Thorpe S E, Murphy E J, Watkins J L. 2007. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport. Deep Sea Research Part I: Oceanographic Research Papers, 54(5): 792–810

    Article  Google Scholar 

  • Wang Zhaomin, Meredith M P. 2008. Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophysical Research Letters, 35(14): L14608, doi: 10.1029/2008GL034344

    Article  Google Scholar 

  • Wang Zhaomin. 2013. On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. Journal of Geophysical Research, 118(3): 1070–1086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Duan.

Additional information

Famdation item: The Shandong Provincial Natural Science Foundation, China under contract No. ZR2014DP011; the National Natural Science Foundation of China under contract No. 41406012; the Basic Scientific Research Fund for National Public Institutes of China under contract No. 2015G05; the Chinese Polar Science Strategy Research Foundation under contract NO. 20150305; the Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences under contract No. KLOCAW1405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Liu, H., Yu, W. et al. The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products. Acta Oceanol. Sin. 35, 8–13 (2016). https://doi.org/10.1007/s13131-016-0901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0901-2

Key words

Navigation