Skip to main content
Log in

The performance of a z-level ocean model in modeling the global tide

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The performance of a z-level ocean model, the Modular Ocean Model Version 4 (MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The performance using various sets of model topography is evaluated. The results show that the optimum filter radius can improve the simulated co-tidal phase and that better topography quality can lead to smaller rootmean square (RMS) error in simulated tides. Sensitivity experiments are conducted to test the impact of spatial resolutions. It is shown that the model results are sensitive to horizontal resolutions. The calculated absolute mean errors of the co-tidal phase show that simulations with horizontal resolutions of 0.5° and 0.25° have about 35.5% higher performance compared that with 1° model resolution. An internal tide drag parameterization is adopted to reduce large system errors in the tidal amplitude. The RMS error of the best tuned 0.25° model compared with the satellite-altimetry-constrained model TPXO7.2 is 8.5 cm for M2. The tidal energy fluxes of M2 and K1 are calculated and their patterns are in good agreement with those from the TPXO7.2. The correlation coefficients of the tidal energy fluxes can be used as an important index to evaluate a model skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accad Y, Pekeris C L. 1978. Solution of the Tidal Equations for the M2 and S2 Tides in the World Oceans from a Knowledge of the Tidal Potential Alone. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 290(1368): 235–266

    Article  Google Scholar 

  • Adcroft A, Hill C, Marshall J. 1997. Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev, 125(9): 2293–2315

    Article  Google Scholar 

  • Antonov J, Seidov D, Boyer T, et al. 2010. World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS, 69

    Google Scholar 

  • Arbic B K, Garner S T, Hallberg R W, et al. 2004. The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep Sea Res Pt II, 51(25): 3069–3101

    Article  Google Scholar 

  • Arbic B K, Wallcraft A J, Metzger E J. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(3): 175–187

    Article  Google Scholar 

  • Bell T. 1975. Topographically generated internal waves in the open ocean. J Geophys Res, 80(3): 320–327

    Article  Google Scholar 

  • Eanes R, Bettadpur S. 1995. The CSR 3.0 global ocean tide model. Center for Space Research, Technical Memorandum, CSR-TM-95-06

    Google Scholar 

  • Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech, 19(2): 183–204

    Article  Google Scholar 

  • Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778

    Article  Google Scholar 

  • Egbert G D, Ray R D, Bills B G. 2004. Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J Geophys Res, 109(C3): C03003

    Article  Google Scholar 

  • Fretwell P, Pritchard H D, Vaughan D G, et al. 2013. Bedmap2: improved ice bed, surface and thickness data sets for Antarctica. Cryosphere, 7(1): 375–393

    Article  Google Scholar 

  • Griffies S M, Harrison M J, Pacanowski R C, et al. 2004. A technical guide to MOM4. GFDL Ocean Group Tech Rep, 5: 371

    Google Scholar 

  • IOC, IHO, BODC. 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, Liverpool, UK: British Oceanographic Data Centre

    Google Scholar 

  • Jayne S R, St Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophys Res Lett, 28(5): 811–814

    Article  Google Scholar 

  • Large W G, Mc Williams J C, Doney S C. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev Geophys, 32(4): 363–403

    Article  Google Scholar 

  • Le Provost C. 2001. Ocean tides. International Geophysics, 69: 267–303

    Article  Google Scholar 

  • Locarnini R, Mishonov A, Antonov J, et al. 2010. World Ocean Atlas 2009, vol. 1, Temperature, edited by S. Levitus. Washington, DC: US Gov Print Off, 184

    Google Scholar 

  • Müller M, Haak H, Jungclaus J, et al. 2010. The effect of ocean tides on a climate model simulation. Ocean Modelling, 35(4): 304–313

    Article  Google Scholar 

  • Munk W, Wunsch C. 1998. Abyssal recipes: energetics of tidal and wind mixing. Deep-Sea Research Part II, 45(12): 1977–2010

    Article  Google Scholar 

  • Murray R J. 1996. Explicit generation of orthogonal grids for ocean models. J Comput Phys, 126(2): 251–273

    Article  Google Scholar 

  • NGDC. 1988. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth.. edited. Boulder, Colorado: NOAA, National Geophysical Data Center

    Google Scholar 

  • NGDC. 2006. 2-minute Gridded Global Relief Data (ETOPO2v2), edited by U.S. Department of Commerce N. O. a. A. A.. Boulder, Colorado: National Geophysical Data Center

    Google Scholar 

  • Pacanowski R C, Gnanadesikan A. 1998. Transient response in a zlevel ocean model that resolves topography with partial cells. Mon Weather Rev, 126(12): 3248–3270

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci-UK, 28(8): 929–937

    Article  Google Scholar 

  • Pekeris C L, Accad Y. 1969. Solution of Laplace's Equations for the M2 Tide in the World Oceans. Philosophical Transactions of the Royal Society of London.

    Google Scholar 

  • Series A, Mathematical and Physical Sciences, 265(1165): 413–436

  • Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophys Res Lett, 34(3): L03611

    Article  Google Scholar 

  • Schwiderski E W. 1980. On charting global ocean tides. Rev Geophys, 18(1): 243–268

    Article  Google Scholar 

  • Shriver J, Arbic B K, Richman J, et al. 2012. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J Geophys Res, 117(C10): C10024

    Article  Google Scholar 

  • Shum C, Woodworth P, Andersen O, et al. 1997. Accuracy assessment of recent ocean tide models. J Geophys Res, 102(C11): 25173–25194

    Article  Google Scholar 

  • Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Res Pt ?, 51(25): 3043–3068

    Article  Google Scholar 

  • Smith W H, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956–1962

    Article  Google Scholar 

  • Yu H, Wang Z, Kuang L, et al. 2015. A numerical study on the circulation and tide in a zigzag bay. Acta Oceanologica Sinica, 34(1): 119–128

    Article  Google Scholar 

  • Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13(1): 167–182

    Article  Google Scholar 

  • Wang Yihang, Fang Guohong, Wei Zexun, et al. 2010. Accuracy assessment of global ocean tide models base on satellite altimetry (in Chinese). Adv Earth Sci, 25(4): 353–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Qiao.

Additional information

Foundation item: The National Natural Science Foundation of China (NSFC)—Shandong Joint Fund for Marine Science Research Centers under contract No. U1406404; the National Basic Research Program (973 Program) of China under contract No. 2010CB950300; the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No. CHINARE04-04; the National Natural Science Foundation of China under contract No. 41406027.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Qiao, F. & Shu, Q. The performance of a z-level ocean model in modeling the global tide. Acta Oceanol. Sin. 35, 35–43 (2016). https://doi.org/10.1007/s13131-016-0884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0884-z

Key words

Navigation