Skip to main content
Log in

Low-frequency variability of the shallow meridional overturning circulation in the South China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The low-frequency variability of the shallow meridional overturning circulation (MOC) in the South China Sea (SCS) is investigated using a Simple Ocean Data Assimilation (SODA) product for the period of 1900–2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport (LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current (NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baehr J, Hirschi J, Beismann J O, et al. 2004. Monitoring the meridional overturning circulation in the North Atlantic: a modelbased array design study. J Marine Res, 62(3): 283–312

    Article  Google Scholar 

  • Cabanes C, Lee T, Fu L L. 2008. Mechanisms of interannual variations of the meridional overturning circulation of the North Atlantic Ocean. J Phys Oceanogr, 38(2): 467–480

    Article  Google Scholar 

  • Dickson R R, Brown J. 1994. The production of North Atlantic deep water: sources, rates, and pathways. J Geophys Res, 99(C6): 12319–12341

    Article  Google Scholar 

  • Giese B S, Ray S. 2011. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res, 116(C2): C02024

    Google Scholar 

  • Godfrey J S. 1989. A Sverdrup model of the depth-integrated flow for the World Ocean allowing for island circulations. Geophys Astrophys Fluid Dyn, 45(1–2): 89–112

    Article  Google Scholar 

  • Hirschi J, Marotzke J. 2007. Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J Phys Oceanogr, 37(3): 743–763

    Article  Google Scholar 

  • Kim Y Y, Qu Tangdong, Jensen T, et al. 2004. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J Geophys Res, 109(C3): C03040

    Google Scholar 

  • Lan Jian, Wang Yu, Cui Fengjuan, et al. 2015. Seasonal variation in the South China Sea deep circulation. J Geophy Res, 120(3): 1682–1690

    Article  Google Scholar 

  • Lan Jian, Zhang Ningning, Wang Yu. 2013. On the dynamics of the South China Sea deep circulation. J Geophys Res, 118(3): 1206–1210

    Article  Google Scholar 

  • Lee T, Marotzke J. 1998. Seasonal cycles of meridional overturning and heat transport of the Indian Ocean. J Phys Oceanogr, 28(5): 923–943

    Article  Google Scholar 

  • Liu Changjian, Du Yan, Zhang Qingrong, et al. 2008. Seasonal variation of subsurface and intermediate water masses in the South China Sea. Oceanologia et Limnologia Sinica (in Chinese), 39(1): 55–64

    Google Scholar 

  • Liu Qinyu, Arata K, Su Jilan. 2008. Recent progress in studies of the South China Sea circulation. J Oceanogr, 64(5): 753–762

    Article  Google Scholar 

  • Liu W T, Xie Xiaosu. 1999. Spacebased observations of the seasonal changes of South Asian monsoons and oceanic responses. Geophys Res Lett, 26(10): 1473–1476

    Article  Google Scholar 

  • Metzger E J, Hurlburt H E. 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res, 101(C5): 12331–12352

    Article  Google Scholar 

  • Nan Feng, Xue Huijie, Chai Fei, et al. 2013. Weakening of the kuroshio intrusion into the South China Sea over the past two decades. J Climate, 26(20): 8097–8110

    Article  Google Scholar 

  • Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. J Geophys Res, 116(C12): C12045

    Article  Google Scholar 

  • Qiu Bo, Chen Shuiming. 2010. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J Phys Oceanogr, 40(11): 2525–2538

    Article  Google Scholar 

  • Qu Tangdong, Du Yan, Meyers G, et al. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett, 32(24): L24609

    Article  Google Scholar 

  • Qu Tangdong, Kim Y Y, Yaremchuk M, et al. 2004. Can luzon strait transport play a role in conveying the impact of ENSO to the South China Sea?. J Climate, 17(18): 3644–3657

    Article  Google Scholar 

  • Qu Tangdong, Mitsudera H, Yamagata T. 2000. Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research, 105(C3): 6415–6424

    Article  Google Scholar 

  • Schott F A, Dengler M, Schoenefeldt R. 2002. The shallow overturning circulation of the Indian Ocean. Prog Oceanogr, 53(1): 57–103

    Article  Google Scholar 

  • Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep Sea Res Part I, 41(11–12): 1663–1683

    Article  Google Scholar 

  • Sheremet V A. 2001. Hysteresis of a western boundary current leaping across a gap. J Phys Oceanogr, 31(5): 1247–1259

    Article  Google Scholar 

  • Shu Yeqiang, Xue Huijie, Wang Dongxiao, et al. 2014. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J Geophys Res, 119(5): 3012–3028

    Article  Google Scholar 

  • Sime L C, Stevens D P, Heywood K J, et al. 2006. A decomposition of the Atlantic Meridional Overturning. J Phys Oceanogr, 36(12): 2253–2270

    Article  Google Scholar 

  • Smith R D, Dukowicz J K, Malone R C. 1992. Parallel ocean general circulation modeling. Physica D: Nonlinear Phenomena, 60(1–4): 38–61

    Article  Google Scholar 

  • Thompson D M, Cole J E, Shen G T, et al. 2015. Early twentieth-century warming linked to tropical Pacific wind strength. Nature Geoscience, 8(2): 117–121

    Article  Google Scholar 

  • Tian Jiwei, Qu Tangdong. 2012. Advances in research on the deep South China Sea circulation. Chinese Science Bulletin, 57(24): 3115–3120

    Article  Google Scholar 

  • Tozuka T, Kagimoto T, Masumoto Y, et al. 2002. Simulated multiscale variations in the western Tropical Pacific: the mindanao dome revisited. J Phys Oceanogr, 32(5): 1338–1359

    Article  Google Scholar 

  • Vellinga M, Wood R A. 2002. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54(3): 251–267

    Article  Google Scholar 

  • Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. 2006. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett, 33(14): L14605

    Article  Google Scholar 

  • Wang Dongxiao, Liu Xiongbin, Wang Wenzhi, et al. 2004. Simulation of meridional overturning in the upper layer of the South China Sea with an idealized bottom topography. Chinese Science Bulletin, 49(7): 740–746

    Article  Google Scholar 

  • Wyrtki K. 1961. Physical oceanography of the Southeast Asian waters. NAGA Rep, No 2. La Jolla California: The University of California Scripps Institution of Oceanography, 195

    Google Scholar 

  • Xie Qiang, Xiao Jingen, Wang Dongxiao, et al. 2013. Analysis of deeplayer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chinese Science Bulletin, 58(32): 4000–4011

    Article  Google Scholar 

  • Xie Shangping, Xie Qiang, Wang Dongxiao, et al. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research, 108 (C8): 3261

    Article  Google Scholar 

  • Yang Haiyuan, Wu Lixin. 2012. Trends of upper-layer circulation in the South China Sea during 1959–2008. Journal of Geophysical Research, 117(C8): C08037

    Article  Google Scholar 

  • Yu Kai, Qu Tangdong. 2013. Imprint of the pacific decadal oscillation on the South China Sea throughflow variability. Journal of Climate, 26(24): 9797–9805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyong Luo.

Additional information

Foundation item: The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11010302; the National Natural Science Foundation of China under contract No. 41376009; the Joint Program of Shandong Province and National Natural Science Foundation of China under contract No. U1406401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Luo, Y. Low-frequency variability of the shallow meridional overturning circulation in the South China Sea. Acta Oceanol. Sin. 35, 10–20 (2016). https://doi.org/10.1007/s13131-016-0826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0826-9

Keywords

Navigation