Skip to main content

Advertisement

Log in

Gorgan Bay: a microcosm for study on macrobenthos species-environment relationships in the southeastern Caspian Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions (salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis (PCA) based on environmental data separated eastern and western stations. The maximum (4 500 ind./m2) and minimum (411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity (22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson M J, Gorley R N, Clarke K R. 2008. PERMANOVA+for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E Ltd, 214

    Google Scholar 

  • Anderson M J, Robinson J. 2003. Generalized discriminant analysis based on distances. Australian & New Zealand Journal of Statistics, 45(3): 301–318

    Article  Google Scholar 

  • Baldanzi S, McQuaid C D, Cannicci S, et al. 2013. Environmental domains and range-limiting mechanisms: testing the abundant Centre hypothesis using southern African sandhoppers. PLoS One, 8(1): e54598, doi: 10.1371/journal.pone.0054598

    Article  Google Scholar 

  • Bandany G A, Akrami R, Taheri M, et al. 2008. Distribution, abundance and biomass of polychaete in the north coast of Gorgan Bay. Iranian Scientific Fisheries Journal, 16(4): 45–52

    Google Scholar 

  • Cartier V, Claret C, Garnier R, et al. 2011. How salinity affects life cycle of a brackish water species, Chironomus salinarius KIEFFER (Diptera: Chironomidae). Journal of Experimental Marine Biology and Ecology, 405(1–2): 93–98

    Article  Google Scholar 

  • Clarke K R, Warwick R M. 1994. Change In Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd ed. Plymouth, UK: Plymouth Marine Laboratory, 144

    Google Scholar 

  • Conde A, Novais J M, Domínguez J. 2013. Distribution of intertidal macrobenthic assemblages in relation to environmental factors in the Tagus estuary, western Portugal. Scientia Marina, 77(1): 179–188, doi: 10.3989/scimar.03628.21E

    Article  Google Scholar 

  • Correia M J, Costa J L, Chainho P, et al. 2012. Inter-annual variations of macrobenthic communities over three decades in a landlocked coastal lagoon (Santo André, SW Portugal). Estuarine, Coastal and Shelf Science, 110: 168–175

    Article  Google Scholar 

  • Dauer D M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin, 26(5): 249–257

    Article  Google Scholar 

  • Delgado L, Guerao G, Ribera C. 2011. Effects of different salinities on juvenile growth of Gammarus aequicauda (Malacostraca: Amphipoda). International Journal of Zoology, 2011. Article ID 248790. doi: 10.1155/2011/248790

    Article  Google Scholar 

  • Dumont H J. 2000. Endemism in the Ponto-Caspian Fauna, with special emphasis on the onychopoda (crustacea). Advances in Ecological Research, 31: 181–196

    Article  Google Scholar 

  • Fabbrocini A, Di Matteo O, Adamo R. 2008. Abra segmentum (Mollusca: Pelecypoda) of the Lesina Lagoon (Southern Adriatic coast, Italy): observations on variations in the population in relation to the main environmental parameters. Transitional Waters Bulletin, 2(1): 39–44

    Google Scholar 

  • García-Arberas L, Rallo A. 2004. Population dynamics and production of Streblospio benedicti (Polychaeta) in a non-polluted estuary in the Basque coast (Gulf of Biscay). Scientia Marina, 68(2): 193–203

    Article  Google Scholar 

  • Ghasemi A F. 2014. Species composition of benthic macroinvertebrates on the coast line vegetated rocky substrates of the southern Caspian Sea. Transylvanian Review of Systematical and Ecological Research-The Wetlands Diversity, 16(1): 57–64

    Google Scholar 

  • Ghasemi A F, Clement J C, Taheri M, et al. 2014. Changes in the quantitative distribution of Caspian Sea polychaetes: prolific fauna formed by non-indigenous species. Journal of Great Lakes Research, 40(3): 692–698, doi: 10.1016/j.jglr.2014.05.004

    Article  Google Scholar 

  • Ghasemi A F, Taheri M, Jam A. 2013. Does the introduced polychaete Alitta succinea establish in the Caspian Sea?. Helgoland Marine Research, 67(4): 715–720

    Article  Google Scholar 

  • Gogina M, Glockzin M, Zettler M. 2010. Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 2. Modelling and prediction. Journal of Marine Systems, 80(1–2): 57–70, doi: 10.1016/j.jmarsys.2009.10.001

    Article  Google Scholar 

  • Guseinov M K. 2005. Zoobenthic communities of the Dagestan region of the Caspian Sea. Russian Journal of Marine Biology, 31(1): 7–13

    Article  Google Scholar 

  • Ingels J, Tchesunov A V, Vanreusel A. 2011. Meiofauna in the Gollum Channels and the whittard canyon, Celtic margin-How local environmental conditions shape nematode structure and function. PLoS One, 6(5): e20094, doi: 10.1371/journal.pone.0020094

    Article  Google Scholar 

  • Karpinsky M G. 2005. The Caspian Sea Environment. In: Kostianoy A, Kosarev A, eds. Biodiversity: The Handbook of Environmental Chemistry. Berlin: Springer-Verleg, 159–173

    Google Scholar 

  • Karpinsky M G. 2010. On peculiarities of introduction of marine species into the Caspian Sea. Russian Journal of Biological Invasions, 1(1): 7–10

    Article  Google Scholar 

  • Kasymov A G. 1994. Ecology of the Caspian Lake (in Russian). Baku, Azerbaijan: Azerbaijan Publishing House

    Google Scholar 

  • Kevrekidis T. 2004. Seasonal variation of the macrozoobenthic community structure at low salinities in a Mediterranean lagoon Monolimni Lagoon (Monolimni Lagoon, northern Aegean). International Review of Hydrobiology, 89(4): 407–425

    Article  Google Scholar 

  • Lahijani H, Haeri A O, Sharifi A. 2002. Sedimentology and mineralogy of Gorgan bay sediments. In: Research Report of the Iranian National Center for Oceanography. Tehran: INIO, 61

    Google Scholar 

  • Lahijani H, Haeri A O, Sharifi A, et al. 2010. Sedimentological and Geochemical Characteristics of the Gorgan Bay Sediments. Oceanography, 1(1): 11

    Google Scholar 

  • Malinovskaya L V, Zinchenko T D. 2010. Mytilaster lineatus (Gmelin): long-term dynamics, distribution of invasive mollusk in the Northern Caspian Sea. Russian Journal of Biological Invasions, 1(4): 288–295

    Article  Google Scholar 

  • Milbrink G, Timm T. 2001. Distribution and dispersal capacity of the Ponto-Caspian tubificid oligochaete Potamothrix moldaviensis Vejdovský et Mrázek, 1903 in the Baltic Sea Region. Hydrobiologia, 463(1–3): 93–102

    Article  Google Scholar 

  • Mordukhai-Boltovskoi F D. 1979. Composition and distribution of Caspian fauna in the light of modern data. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 64(1): 1–38

    Article  Google Scholar 

  • Nicastro A, Bishop M J. 2013. Weak and habitat-dependent effects of nutrient pollution on macrofaunal communities of southeast Australian Estuaries. PLoS One, 8(6): e65706, doi: 10.1371/journal. pone.0065706

    Article  Google Scholar 

  • Paavola M, Olenin S, Leppäkoski E. 2005. Are invasive species most successful in habitats of low native species richness across European brackish water seas?. Estuarine, Coastal and Shelf Science, 64(4): 738–750, doi: 10.1016/j.ecss.2005.03.021

    Article  Google Scholar 

  • Pinedo S, Sardá R, Rey C, et al. 2000. Effect of sediment particle size on recruitment of Owenia fusiformis in the Bay of Blanes (NW Mediterranean Sea): an experimental approach to explain field distribution. Marine Ecology Progress Series, 203: 205–213

    Article  Google Scholar 

  • Rajabipour F, Mashaii N, Saresangi H, et al. 2011. Chironomus Aprilinus Meigen, 1830. production in underground brackish waters of Iran. Academic Journal of Entomology, 4(2): 41–46

    Google Scholar 

  • Roohi A, Kideys A E, Sajjadi A, et al. 2010. Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion of the ctenophore Mnemiopsis Leidyi. Biological Invasions, 12(7): 2343–2361

    Article  Google Scholar 

  • Sardá R, Martin D. 1993. Populations of Streblospio (Polychaeta: Spionidae) in temperate zones: demography and production. Journal of the Marine Biological Association of the United Kingdom, 73(4): 769–584

    Article  Google Scholar 

  • Seys J, Vincx M, Meire P. 1999. Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium). Hydrobiologia, 406: 119–132

    Article  Google Scholar 

  • Sharbaty S. 2012. 3-D simulation flow pattern in the Gorgan Bay in during summer. Saeed Sharbaty/International Journal of Engineering Research and Applications, 2(3): 700–707

    Google Scholar 

  • Snickars M, Gullström M, Sundblad G, et al. 2013. Species-environment relationships and potential for distribution modelling in coastal waters. Journal of Sea Research, 85: 116–125, doi: 10.1016/j.seares.2013.04.008

    Article  Google Scholar 

  • Taheri M, Yazdani F M, Seyfabadi J. 2007. Ecological study and species identification of polychaetes of Gorgan Bay (Bandargaz Coast). Iranian Journal of Biology, 20(2): 286–295

    Google Scholar 

  • Taheri M, Seyfabadi J, Abtahi B, et al. 2009. Population changes and reproduction of an alien spionid polychaete, Streblospio gynobranchiata, in shallow waters of the south Caspian Sea. Marine Biodiversity Records, 2(1): 1–5

    Google Scholar 

  • Taheri M, Yazdani F M. 2011. Community structure and biodiversity of shallow water macrobenthic fauna at Noor coast, South Caspian Sea, Iran. Journal of the Marine Biological Association of the United Kingdom, 91(3): 607–613

    Article  Google Scholar 

  • Taheri M, Yazdani M, Noranian M, et al. 2012. Spatial distribution and biodiversity of macrofauna in the southeast of the Caspian Sea, Gorgan Bay in relation to environmental conditions. Ocean Science Journal, 47(2): 113–122

    Article  Google Scholar 

  • Timm T. 2013. The genus Potamothrix (Annelida, Oligochaeta, Tubificidae): a literature review. Estonian Journal of Ecology, 62(2): 121–136, doi: 10.3176/eco.2013.2.04

    Article  Google Scholar 

  • Van Colen C, Rossi F, Montserrat F, et al. 2012. Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning. PLoS One, 7(11): e49795, doi: 10.1371/journal.pone. 0049795

    Article  Google Scholar 

  • Van Hoey G, Degraer S, Vincx M. 2004. Macrobenthic community structure of soft-bottom sediments at the Belgian Continental Shelf. Estuarine, Coastal and Shelf Science, 59(4): 599–613

    Article  Google Scholar 

  • Veloso V G, Cardoso R S. 2001. Effect of morphodynamics on the spatial and temporal variation of macrofauna on three sandy beaches, Rio de Janeiro State, Brazil. Journal of the Marine Biological Association of the United Kingdom, 81(3): 369–375

    Article  Google Scholar 

  • WORMS. 2011. World Register of Marine Species. http://www.marinespecies. org

    Google Scholar 

  • Yazdani F M, Abtahi B, Esmaili Sari A, et al. 2007. Ion composition and osmolarity of Caspian Sea ctenophore, Mnemiopsis leidyi, in different salinities. Journal of Experimental Marine Biology and Ecology, 352(1): 28–34, doi: 10.1016/j.jembe.2007.06.029

    Article  Google Scholar 

  • Yazdani F M, Taheri M, Seyfabadi J. 2010. Effect of different salinities on survival and growth of prawn, Palaemon elegans (Palaemonidae). Journal of the Marine Biological Association of the United Kingdom, 90(2): 255–259, doi: 10.1017/S0025315409990385

    Article  Google Scholar 

  • Zenkevitch L A. 1963. Biology of the USSR Seas (in Russian). Moscow: AN SSSR

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Faraz Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A.F., Taheri, M., Foshtomi, M.Y. et al. Gorgan Bay: a microcosm for study on macrobenthos species-environment relationships in the southeastern Caspian Sea. Acta Oceanol. Sin. 35, 82–88 (2016). https://doi.org/10.1007/s13131-015-0728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0728-2

Keywords

Navigation