Skip to main content
Log in

Characteristics of Sr, Nd and Pb isotopic compositions of hydrothermal Si-Fe-Mn-oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea–Australia–Canada–Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/86Sr=0.708 079–0.708 581; εNd=5.149 833–6.534 826; 208Pb/204Pb=38.245–38.440; 207Pb/204Pb=15.503–15.560; 206Pb/204Pb=18.682–18.783. 87Sr/86Sr isotope ratios are relatively homogeneous and close to the value of the surrounding seawater (0.709 16). The content of Sr in the samples contributed by seawater was estimated to be 76.7%–83.1% of total amount. The mixing temperature of hydrothermal fluids and seawater were ranging from 53.2°C to 72.2°C and the hydrothermal activities were unstable when the samples precipitated. The eNd values of all the samples are positive, which differ from the values of ferromanganese nodules (crusts) with hydrogenic origin. Nd was mainly derived from substrate rocks leached by hydrothermal circulation and preserved the hydrothermal signature. Pb isotopic compositions of most samples show minor variability except Sample #9–2 that has relatively high values of Pb isotopes. The Pb may be derived from the Eastern Manus Basin rocks leached by the hydrothermal fluid. The slightly lower 208Pb/204Pb and 207Pb/204Pb values of the samples indicated that the hydrothermal circulation in PACMANUS was not entire and sufficient, or that hydrothermal circulation had transient changes in the past. Si-Fe-Mn-oxyhydroxides in the samples preserved the heterogeneities of local rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouchami W, Goldstein S L, Gazer S J G, et al. 1997. Secular changes of lead and neodymium in central Pacific seawater recorded by a Fe-Mn crust. Geochim Cosmochim Acta, 61(18): 3957–3974

    Article  Google Scholar 

  • Albarède F, Goldstein S L, Dautel D. 1997. The neodymium isotopic composition of manganese nodules from the Southern and Indian oceans, the global oceanic neodymium budget, and their bearing on deep ocean circulation. Geochim Cosmochim Acta, 61(6): 1277–1291

    Article  Google Scholar 

  • Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta, 63(3–4): 363–372

    Article  Google Scholar 

  • Alt J C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern pacific. Mar Geol, 81(1–4): 227–239

    Article  Google Scholar 

  • Baker E T, Massoth G J, Nakamura K-I, et al. 2005. Hydrothermal activity on near-arc sections of back-arc ridges: Results from the Mariana Trough and Lau Basin. Geochem Geophy Geosy, 6(9): Q09001

    Google Scholar 

  • Barrett T J, Taylor P N, Lugoqski J. 1987. Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect. Geochim Cosmochim Acta, 51(9): 2241–2253

    Article  Google Scholar 

  • Benjamin S B, Haymon R M. 2006. Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochem Geophy Geosy, 7(5): Q05002

    Google Scholar 

  • Binns R A, Barriga F J A S, Miller D J. 2007. Leg 193 Synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: Barriga F J A S, Binns R A, Miller D J, et al., eds. Proceedings of the Ocean Drilling Program. Scientific Results, College Station, TX(Ocean Drilling Program), 193: 1–17

    Google Scholar 

  • Binns R A, Barriga F J A S, Miller D J, et al. 2002. Leg 193 summary: anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: Barriga F J A S, Binns R A, Miller D J, et al., eds. Proceedings of the Ocean Drilling Program. Initial Reports, College Station, TX(Ocean Drilling Program), 193: 1–84

    Google Scholar 

  • Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ Geol, 88(8): 2226–2236

    Article  Google Scholar 

  • Binns R A, Scott S D, Bogdanov Y A, et al. 1993. Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Econ Geol, 88(8): 2122–2153

    Article  Google Scholar 

  • Bogdanov Y A, Lisitzin A P, Binns R A, et al. 1997. Low-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea. Mar Geol, 142(1–4): 99–117

    Article  Google Scholar 

  • Boyd T, Scott S D. 1999. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea. Can Mineral, 37: 973–990

    Google Scholar 

  • Chavagnac V, Palmer M R, Milton J A, et al. 2006. Hydrothermal sediments as a potential record of seawater Nd isotope compositions: The Rainbow vent site (36°14'N, Mid-Atlantic Ridge). Paleoceanography, 21(3): PA3012

    Google Scholar 

  • Chiba H, Uchiyama N, Teagle D A H. 1998. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. In: Herzig P M, Humphris S E, Miller D J, et al., eds. Proceedings of the Ocean Drilling Program. Scientific Results, College Station, TX(Ocean Drilling Program), 158: 85–90

    Google Scholar 

  • Craddock P R, Bach W, Seewald J S, et al. 2010. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim Cosmochim Acta, 74(19): 5494–5513

    Article  Google Scholar 

  • de Ronde C E J, Baker E T, Massoth G J, et al. 2001. Intra-oceanic subduction- related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett, 193(3–4): 359–369

    Article  Google Scholar 

  • Dekov V M, Petersen S, Garbe-Schonberg C-D, et al. 2010. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9°33'S, Mid-Atlantic Ridge). Chem Geol, 278(3–4): 186–200

    Article  Google Scholar 

  • Edwards K J, Glazer B T, Rouxel O J, et al. 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME J, 5(11): 1748–1758

    Article  Google Scholar 

  • Elderfield H, Whitfield M, Burton J, et al. 1988. The oceanic chemistry of the rare-earth elements [and discussion]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 325: 105–126

    Article  Google Scholar 

  • Emerson D, Moyer C L. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol, 68(6): 3085–3093

    Article  Google Scholar 

  • Faure G. 1986. Principles of Isotope Geology. 2nd ed. New York: Wiley, 141–153

    Google Scholar 

  • Fouquet Y, Marcoux E. 1995. Lead isotope systematics in Pacific hydrothermal sulfide deposits. J Geophys Res, 100(B4): 6025–6040

    Article  Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou J L, et al. 1991. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry. Geology, 19(4): 303–306

    Article  Google Scholar 

  • Frank M, Marbler H, Koschinsky A, et al. 2006. Submarine hydrothermal venting related to volcanism in the Lesser Antilles: Evidence from ferromanganese precipitates. Geochem Geophy Geosy, 7(4): Q04010

    Google Scholar 

  • Frank M, O'Nions R K, Hein J R, et al. 1999. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim Cosmochim Acta, 63(11–12): 1689–1708

    Article  Google Scholar 

  • Fretzdorff S, Schwarz-Schampera U, Gibson H L, et al. 2006. Hydrothermal activity and magma genesis along a propagating backarc basin: Valu Fa Ridge (southern Lau Basin). J Geophys Res, 111(B8): B08205

    Google Scholar 

  • Gamo T, Okamura K, Charlou J-L, et al. 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology, 25(2): 139–142

    Article  Google Scholar 

  • German C R, Klinkhammer G P, Edmond J M, et al. 1990. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 345(6275): 516–518

    Article  Google Scholar 

  • Goldstein S L, Hemming S R. 2003. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise on Geochemistry, 6: 453–489

    Article  Google Scholar 

  • Halliday A N, Davidson J P, Holden P, et al. 1992. Metalliferous sediments and the scavenging residence time of Nd near hydrothermal vents. Geophys Res Lett, 19(8): 761–764

    Article  Google Scholar 

  • Hein J R, Koschinsky A, Halbach P, et al. 1997. Iron and manganese oxide mineralization in the Pacific. Geological Society, London, Special Publications, 119(1): 123–138

    Article  Google Scholar 

  • Hein J R, Schulz M S, Dunham R E, et al. 2008. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J Geophys Res, 113(B8): B08S14

    Google Scholar 

  • Hekinian R, Hoffert M, Larque P, et al. 1993. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Econ Geol, 88(8): 2099–2121

    Article  Google Scholar 

  • Hrischeva E, Scott S D. 2007. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim Cosmochim Acta, 71(14): 3476–3497

    Article  Google Scholar 

  • Iizasa K, Kawasaki K, Maeda K, et al. 1998. Hydrothermal sulfidebearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacific. Mar Geol, 145(1–2): 1–21

    Article  Google Scholar 

  • Kamenetsky V S, Binns R A, Gemmell J B, et al. 2001. Parental basaltic melts and fluids in eastern Manus backarc Basin: implications for hydrothermal mineralisation. Earth Planet Sci Lett, 184(3–4): 685–702

    Article  Google Scholar 

  • Karl D M, Brittain A M, Tilbrook B D. 1989. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Res Pt A, 36(11): 1655–1673

    Article  Google Scholar 

  • Kim J, Lee I, Lee K-Y. 2004. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: Evaluation of magmatic contribution to hydrothermal system. J Geophys Res, 109(B12): B12210

    Google Scholar 

  • Martinez F, Taylor B. 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Mar Geophys Res, 18(2–4): 203–224

    Article  Google Scholar 

  • Mills R A, Wells D M, Roberts S. 2001. Genesis of ferromanganese crusts from the TAG hydrothermal field. Chem Geol, 176(1–4): 283–293

    Article  Google Scholar 

  • Park S-H, Lee S-M, Kamenov G D, et al. 2010. Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea. Chem Geol, 269(3–4): 339–349

    Article  Google Scholar 

  • Petersen S, Herzig P, Hannington M D, et al. 2003. Gold-rich massive sulfides from the interior of the felsic-hosted PACMANUS massive sulfide deposit, Eastern Manus Basin (PNG). In: Eliopoulos D, ed. Mineral Exploration And Sustainable Development. Rotterdam: Millpress, 171–174

    Google Scholar 

  • Reeves E P, Seewald J S, Saccocia P, et al. 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta, 75(4): 1088–1123

    Article  Google Scholar 

  • Reynolds B C, Frank M, O'Nions R K. 1999. Nd- and Pb-isotope time series from Atlantic ferromanganese crusts: implications for changes in provenance and paleocirculation over the last 8 Myr. Earth Planet Sci Lett, 173(4): 381–396

    Article  Google Scholar 

  • Scott S D, Binns R A. 1995. Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus basins of the western Pacific. Geol Soc London Spe Pub, 87(1): 191–205

    Article  Google Scholar 

  • Sinton J M, Ford L L, Chappell B, et al. 2003. Magma genesis and mantle heterogeneity in the manus back-Arc Basin, Papua New Guinea. J Petrol, 44(1): 159–195

    Article  Google Scholar 

  • Stuart F M, Ellam R M, Duckworth R C. 1999. Metal sources in the Middle Valley massive sulphide deposit, northern Juan de Fuca Ridge: Pb isotope constraints. Chem Geol, 153(1–4): 213–225

    Article  Google Scholar 

  • Sun Zhilei, Zhou Huaiyang, Glasby G P, et al. 2012. Formation of Fe–Mn–Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. J Asian Earth Sci, 43(1): 64–76

    Article  Google Scholar 

  • Taylor B. 1979. Bismarck Sea: Evolution of a back-arc basin. Geology, 7(4): 171–174

    Article  Google Scholar 

  • Tregoning P. 2002. Plate kinematics in the western Pacific derived from geodetic observations. J Geophys Res, 107(B1): 2020

    Article  Google Scholar 

  • van de Flierdt T, Frank M, Halliday A N, et al. 2004. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget-a combined Pb-Hf-Nd isotope approach. Earth Planet Sci Lett, 222(1): 259–273

    Article  Google Scholar 

  • Winter B L, Johnson C M, Clark D L. 1997. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater. Geochim Cosmochim Acta, 61(19): 4181–4200

    Article  Google Scholar 

  • Zeng Zhigang, Ouyang Hegen, Yin Xuebo, et al. 2012. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence. J Asian Earth Sci, 60: 130–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Additional information

Foundation item: The National Key Basic Research Program of China under contract No. 2013CB429700; the National Special Fund for the 12th Five Year Plan of COMRA under contract No. DY125-12-R-05; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11030302; the National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-11-R-05; the National Natural Science Foundation of China under contract Nos 41325021, 40830849 and 40976027; Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No. JQ200913.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zeng, Z. & Wang, X. Characteristics of Sr, Nd and Pb isotopic compositions of hydrothermal Si-Fe-Mn-oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin. Acta Oceanol. Sin. 34, 27–34 (2015). https://doi.org/10.1007/s13131-015-0706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0706-8

Keywords

Navigation