Skip to main content
Log in

Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

In this study the structure and seasonal variations of deep mean circulation in the East/Japan Sea (EJS) were numerically simulated using a mid-resolution ocean general circulation model with two different parameterizations for the eddy-topography interaction (ETI). The strong deep mean circulations observed in the EJS are well reproduced when using the ETI parameterizations. The seasonal variability in the EJS deep layer is shown by using ETI parameterization based on the potential vorticity approach, while it is not shown in the statistical dynamical parameterization. The driving mechanism of the strong deep mean currents in the EJS are discussed by investigating the effects of model grids and parameterizations. The deep mean circulation is more closely related to the baroclinic process and potential vorticity than it is to the wind driven circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chapman D C, Haidvogel D B. 1992. Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Geophysical & Astrophysical Fluid Dynamics, 64(1–4): 31–65

    Article  Google Scholar 

  • Charney J G. 1947. The dynamics of long waves in a baroclinic westerly current. J Meteor, 4(5): 136–162

    Article  Google Scholar 

  • Choi B H, Kim K O, Eum H M. 2002. Digital bathymetric and topographic data for neighboring seas of Korea. J Korean Soc Coastal Ocean Eng (in Korean), 14: 41–50

    Google Scholar 

  • Choi Y J, Yoon J-H. 2010. Structure and seasonal variability of the deep mean circulation of the East Sea (Sea of Japan). J Oceanogr, 66(3): 349–361

    Article  Google Scholar 

  • Crosby D S, Breaker L C, Gemmill W H. 1993. A proposed definition for vector correlation in geophysics: theory and application. J Atmos Oceanic Technol, 10(3): 355–367

    Article  Google Scholar 

  • Danchenkov M A, Riser S C, Yoon J-H. 2003. Deep currents of the central Sea of Japan. Pacific Oceanogr, 1: 6–11

    Google Scholar 

  • Dewar W K. 1998. Topography and barotropic transport control by bottom friction. J Mar Res, 56: 295–328

    Article  Google Scholar 

  • Eady E T. 1949. Long waves and cyclone waves. Tellus, 1(3): 33–52

    Article  Google Scholar 

  • Eby M, Holloway G. 1994. Grid transformation for incorporating the Arctic in a global ocean model. Climate Dyn, 10(4–5): 241–247

    Google Scholar 

  • Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20(1): 150–155

    Article  Google Scholar 

  • Greatbatch R J. 1998. Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J Phys Oceanogr, 28(3): 422–432

    Article  Google Scholar 

  • Greatbatch R J, Li Guoqing. 2000. Alongslope mean flow and an associated upslope bolus flux of tracer in a parameterization of mesoscale turbulence. Deep-Sea Res Pt I, 47(4): 709–735

    Article  Google Scholar 

  • Hanawa K, Mitsudera M. 1985. About constructing of daily mean values of ocean data. Coastal Res Note, 23: 79–87

    Google Scholar 

  • Hirose N, Kawamura H, Lee H J, et al. 2007. Sequential forecasting of the surface and subsurface conditions in the Japan Sea. J Oceanogr, 63(3): 467–481

    Article  Google Scholar 

  • Hogan P J, Hurlburt H E. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea models with 1/8° to 1/64° resolution. J Phys Oceanogr, 30(10): 2535–2561

    Article  Google Scholar 

  • Holloway G. 1992. Representing topographic stress for large-scale ocean models. J Phys Oceanogr, 22(9): 1033–1046

    Article  Google Scholar 

  • Holloway G. 2008. Observing global ocean topostrophy. J Geophys Res, 113(C7): C07054, doi: 10.1029/2007JC004635

    Google Scholar 

  • Holloway G, Sou T, Eby M. 1995. Dynamics of circulation of the Japan Sea. J Mar Res, 53(4): 539–569

    Article  Google Scholar 

  • Holloway G, Wang Zeliang. 2009. Representing eddy stress in an Arctic Ocean model. J Geophys Res, 114: C06020, doi: 10.1029/ 2008JC005169

    Google Scholar 

  • Huppert H E. 1975. Some remarks on the initiation of inertial Taylor columns. J Fluid Mech, 67: 397–412

    Article  Google Scholar 

  • Ishizaki H, Motoi T. 1999. Reevaluation of the Takano-Oonishi scheme for momentum advection on bottom relief in ocean models. J Atmos Oceanic Technol, 16(12): 1994–2010

    Article  Google Scholar 

  • Isoda Y, Saitoh S I. 1993. The northward intruding eddy along the East coast of Korea. J Oceanogr, 49(4): 443–458

    Article  Google Scholar 

  • Kim Y J. 2007. A study on the Japan/East Sea oceanic circulation using an extra-fine resolution model [dissertation]. Fukuoka: Kyushu University

  • Kim K, Kim K-R, Kim D-H, et al. 2001. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys Res Let, 28(17): 3293–3296

    Article  Google Scholar 

  • Kim C H, Yoon J-H. 1996. Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J Oceanogr, 52(3): 359–373

    Article  Google Scholar 

  • Kitani K. 1987. Direct current measurement of the Japan Sea Proper Water (in Japanese). Nihonkai-ku Suisan Shiken Kenkyuu Renraku News, Japan Sea National Fisheries Research Institute, 341: 1–6

    Google Scholar 

  • Lee H J, Yoon J-H, Kawamura H, et al. 2003. Comparison of RIAMOM and MOM in modeling the East Sea/Japan Sea circulation. Ocean and Polar Research, 25(3): 287–302

    Article  Google Scholar 

  • Luchin V A, Manko A N, Mosyagina S Y, et al. 2003. Hydrography of water masses (in Russian). In: Terziev F S, ed. Hydrometeorology and Hydrochemistory of Seas. Sankt-Petersburg: Hydrometeoizdat, 8: 157–256

    Google Scholar 

  • Maltrud M, Holloway G. 2008. Implementing biharmonic neptune in a global eddying ocean model. Ocean Modelling, 21(1–2): 22–34

    Article  Google Scholar 

  • Merryfield W, Scott R. 2007. Bathymetric influence on mean currents in two high-resolution near-global ocean models. Ocean Modelling, 16(1–2): 76–94

    Article  Google Scholar 

  • Mesinger F, Arakawa A. 1976. Numerical methods used in atmospheric models, Volume 1. WMO/ICSU Joint Organizing Committee, GARP Publication Series No. 17

  • Minobe S, Sako A, Nakamura M. 2004. Interannual to interdecadal variability in the Japan sea based on a new gridded upper water temperature dataset. J Phys Oceanogr, 34(11): 2382–2397

    Article  Google Scholar 

  • Mori K, Matsuno T, Senjyu T. 2005. Seasonal/spatial variations of the near-inertial oscillations in the deep water of the Japan Sea. J Oceanogr, 61(4): 761–773

    Article  Google Scholar 

  • NCAR. 1989. NCAR ASCII Version of ETOPO5 earth surface elevation. Data Support Section, NCAR

  • Noh Y. 1996. Dynamics of diurnal thermocline formation in the oceanic mixed layer. J Phys Oceanogr, 26(10): 2183–2195

    Article  Google Scholar 

  • Oort A H, Ascher S C, Levitus S, et al. 1989. New estimates of the available potential energy in the World Ocean. J Geophys Res, 94(C3): 3187–3200

    Article  Google Scholar 

  • Penduff T, Juza M, Brodeau L, et al. 2010. Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci, 6: 269–284

    Article  Google Scholar 

  • Sakai R, Yoshikawa Y. 2005. Numerical experiments on the formation mechanism of abyssal current in the Japan Sea. Engineer Sci Rep Kyushu Univ (in Japanese), 26(4): 423–430

    Google Scholar 

  • Salmon R, Holloway G, Hendershott M C. 1976. The equilibrium statistical mechanics of simple quasi-geostrophic models. J Fluid Mech, 75(4): 691–703

    Article  Google Scholar 

  • Senjyu T, Shin H R, Yoon J-H, et al. 2005. Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res Pt II, 52(11–13): 1726–1741

    Article  Google Scholar 

  • Senjyu T, Sudo H. 1996. Interannual variation of the upper portion of the japan sea proper water and its probable cause. J Oceanogr, 52(1): 27–42

    Article  Google Scholar 

  • Seung Y-H, Yoon J-H. 1995. Robust diagnostic modeling of the Japan sea circulation. J Oceanogr, 51(4): 421–440

    Article  Google Scholar 

  • Shin H R, Shin C W, Kim C, et al. 2005. Movement and structural variation of warm eddy WE92 for three years in the Western East/Japan Sea. Deep-Sea Res Pt II, 52(11–13): 1742–1762

    Article  Google Scholar 

  • Takano K. 1974. A General Circulation Model For the World Ocean. Numerical Simulation of Weather and Climate Technical Report. Los Angeles: Univ of California, 47

  • Takematsu M, Nagano Z, Ostrovski A, et al. 1999. Direct measurements of deep currents in the northern Japan Sea. J Oceanogr, 55(2): 207–216

    Article  Google Scholar 

  • Takikawa T, Yoon J-H. 2005. Volume transport through the Tsushima straits estimated from sea level difference. J Oceanogr, 61(4): 699–708

    Article  Google Scholar 

  • Taylor G I. 1917. Motion of solids in fluids when the motion is not irrotational. Proc Roy Soc, A93: 99–113

    Article  Google Scholar 

  • Teague W J, Tracey K L, Watts D R, et al. 2005. Observed deep circulation in the Ulleung Basin. Deep-Sea Res Pt II, 52(11–13): 1802–1826

    Article  Google Scholar 

  • Wallcraft A J, Kara A B, Hurlburt H E. 2005. Convergence of Laplacian diffusion versus resolution of an ocean model. Geophys Res Lett, 32(7), doi: 10.1029/2005GL022514

    Google Scholar 

  • Webb D J, de Cuevas S J, Richmond C S. 1998. Improved advection schemes for ocean models. J Atmos Oceanic Technol, 15(5): 1171–1187

    Article  Google Scholar 

  • Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. EOS Trans AGU, 79: 579

    Article  Google Scholar 

  • Yoon J-H, Kawamura H. 2002. The formation and circulation of the intermediate water in the Japan Sea. J Oceanogr, 58(1): 197–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjin Choi.

Additional information

Foundation item: The Research Program on Climate Change Adaptation (RECCA) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y. Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation. Acta Oceanol. Sin. 34, 1–18 (2015). https://doi.org/10.1007/s13131-015-0693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0693-1

Keywords

Navigation