Skip to main content
Log in

Cloning of catalase and expression patterns of catalase and selenium-dependent glutathione peroxidase from Exopalaemon carinicauda in response to low salinity stress

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H2O2. The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5′-untranslated region (UTR) of 78 bp, a 3′-UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERVVHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abele D, Puntarulo S. 2004. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A, 138(4): 405–415

    Article  Google Scholar 

  • Arthur J R. 2001. The glutathione peroxidases. Cell Mol Life Sci, 57(13–14): 1825–1835

    Article  Google Scholar 

  • Arun S, Thirumurugan R, Visakan R, et al. 2003. Optimal analytical conditions for catalase in fresh water prawn, Macrobrachium malcolmsonii. Biotech Histochem, 78(1): 1–4

    Article  Google Scholar 

  • Brigelius-Flohé R. 1999. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med, 27(9–10): 951–965

    Article  Google Scholar 

  • Bussell J A, Gidman E A, Causton D R, et al. 2008. Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. J Exp Mar Biol Ecol, 358(1): 78–85

    Article  Google Scholar 

  • Cao Mei, Wang Xingqiang, Yan Binlun, et al. 2010. Effects of salinity fluctuation and dietary traditional Chinese herbal medicines on survival, growth and immunity of Exopalaemon carinicauda. Journal of Anhui Agri Sci (in Chinese), 38(7): 3512–3515, 3544

    Google Scholar 

  • Chatziargyriou V, Dailianis S. 2010. The role of selenium-dependent glutathione peroxidase (Se-GPx) against oxidative and genotoxic effects of mercury in haemocytes of mussel Mytilus galloprovincialis (Lmk.). Toxicology in Vitro, 24(5): 1363–1372

    Article  Google Scholar 

  • Chen Fangyi, Liu Haiping, Bo Jun, et al. 2010. Identification of genes differentially expressed in hemocytes of Scylla paramamosain in response to lipopolysaccharide. Fish Shellfish Immunol, 28(1): 167–177

    Article  Google Scholar 

  • Chen Ping, Li Jitao, Liu Ping, et al. 2012. cDNA cloning, characterization and expression analysis of catalase in swimming crab Portunus trituberculatus. Mol Biol Rep, 39(12): 9979–9987

    Article  Google Scholar 

  • Cheng Winton, Tung Ying-Hsiu, Liu Chun-Hung, et al. 2006. Molecular cloning and characterisation of cytosolic manganese superoxide dismutase (cytMn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol, 20(4): 438–449

    Article  Google Scholar 

  • Choi C Y, An K W, An M I. 2008. Molecular characterization and mRNA expression of glutathione peroxidase and glutathione Stransferase during osmotic stress in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol A, 149(3): 330–337

    Article  Google Scholar 

  • De la Vega E, Degnan B M, Hall M R, et al. 2004. Quantitative real time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon. Dis Aquat Organ, 59(3): 195–203

    Article  Google Scholar 

  • De Zoysa M, Whang I, Lee Y, et al. 2009. Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Haliotis discus discus) during thermal, low-salinity and hypoxic stress. Comp Biochem Physiol B, 154(4): 387–395

    Article  Google Scholar 

  • Di Giulio R T, Washburn P C, Wenning R J, et al. 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem, 8(12): 1103–1123

    Article  Google Scholar 

  • Downs C A, Fauth J E, Woodley C M. 2001. Assessing the health of grass shrimp (Palaeomonetes pugio) exposed to natural and anthropogenic stressors: a molecular biomarker system. Mar Biotechnol, 3(4): 380–397

    Article  Google Scholar 

  • Duan Yafei, Liu Ping, Li Jitao, et al. 2013. Expression profiles of selenium dependent glutathione peroxidase and glutathione S-transferase from Exopalaemon carinicauda in response to Vibrio anguillarum and WSSV challenge. Fish Shellfish Immunol, 35(3): 661–670

    Article  Google Scholar 

  • Ekanayake P M, De Zoysa M, Kang H S, et al. 2008. Cloning, characterization and tissue expression of disk abalone (Haliotis discus discus) catalase. Fish Shellfish Immunol, 24(3): 267–278

    Article  Google Scholar 

  • Fernández-Díaz C, Kopecka J, Cañavate J P, et al. 2006. Variations on development and stress defences in Solea senegalensis larvae fed on live and microencapsulated diets. Aquaculture, 251(2–4): 573–584

    Article  Google Scholar 

  • Freeman B A, Crapo J D. 1982. Biology of disease: Free radicals and tissue injury. Lab Invest, 47(5): 412–426

    Google Scholar 

  • Frei B. 1999. Molecular and biological mechanisms of antioxidant action. FASEB J, 13(9): 963–964

    Google Scholar 

  • Fu Mingjun, Zou Zhihua, Liu Shengfa, et al. 2012. Selenium-dependent glutathione peroxidase gene expression during gonad development and its response to LPS and H2O2 challenge in Scylla paramamosain. Fish Shellfish Immunol, 33(3): 532–542

    Article  Google Scholar 

  • Garcia M X U, Foote C, Van Es S, et al. 2000. Differential developmental expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. Biochim Biophys Acta, 1492(2–3): 295–310

    Article  Google Scholar 

  • Gonçalves-Soares D, Zanette J, Yunes J S, et al. 2012. Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Mar Environ Res, 75: 54–61

    Article  Google Scholar 

  • González-Rodríguez G, Colubi A, Gil M Á. 2012. Fuzzy data treated as functional data: A one-way ANOVA test approach. Comput Stat Data Anal, 56(4): 943–955

    Article  Google Scholar 

  • Guo Huayang, Zhang Dianchang, Cui Shuge, et al. 2011. Molecular characterization and mRNA expression of catalase from pearl oyster Pinctada fucata. Mar Genom, 4(4): 245–251

    Article  Google Scholar 

  • Jo P G, Choi Y K, Choi C Y. 2008. Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol, 147(4): 460–469

    Article  Google Scholar 

  • Kubista M, Andrade J M, Bengtsson M, et al. 2006. The real-time polymerase chain reaction. Mol Aspects Med, 27(2–3): 95–125

    Article  Google Scholar 

  • Lametschwandtner G, Brocard C, Fransen M, et al. 1998. The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem, 273: 33635–33643

    Article  Google Scholar 

  • Li Chenghua, Ni Duojiao, Song Linsheng, et al. 2008. Molecular cloning and characterization of a catalase gene from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol, 24(1): 26–34

    Article  Google Scholar 

  • Liu Haipeng, Chen Fangyi, Gopalakrishnan S, et al. 2010a. Antioxidant enzymes from the crab Scylla paramamosain: Gene cloning and gene/protein expression profiles against LPS challenge. Fish Shellfish Immunol, 28(5–6): 862–871

    Article  Google Scholar 

  • Liu Chun-hung, Tseng Mei-chen, Cheng Winton. 2007a. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol, 23(1): 34–45

    Article  Google Scholar 

  • Liu Yuan, Wang Weina, Wang Anli, et al. 2007b. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, 265(1–4): 351–358

    Article  Google Scholar 

  • Liu Kuanfu, Yeh M S, Kou G-H, et al. 2010b. Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, Penaeus monodon, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol, 34(9): 935–944

    Article  Google Scholar 

  • Livingstone D R. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull, 42(8): 656–666

    Article  Google Scholar 

  • Martello L B, Friedman C S, Tjeerdema R S. 2000. Combined effects of pentachlorophenol and salinity stress on phagocytic and chemotactic function in two species of abalone. Aquat Toxico, 49(3): 213–225

    Article  Google Scholar 

  • Maynard E L, Gatto Jr G J, Berg J M. 2004. Pex5p binding affinities for canonical and noncanonical PTS1 peptides. Proteins, 55(4): 856–861

    Article  Google Scholar 

  • Mills G C. 1957. Hemoglobin catabolism I. glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem, 229(1): 189–197

    Google Scholar 

  • Mittapalli O, Neal J J, Shukle R H. 2007. Antioxidant defense response in a galling insect. Proc Natl Acad Sci USA, 104(6): 1889–1894

    Article  Google Scholar 

  • Moullac G L, Haffner P. 2000. Environmental factors affecting immune responses in Crustacea. Aquaculture, 191(1–3): 121–131

    Article  Google Scholar 

  • Mruk D D, Silvestrini B, Mo Mengyun, et al. 2002. Antioxidant superoxide dismutase—a review: its function, regulation in the testis, and role in male fertility. Contraception, 65(4): 305–311

    Article  Google Scholar 

  • Muñoz M, Cedeño R, Rodríguez J, et al. 2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture, 191(1–3): 89–107

    Article  Google Scholar 

  • Orbea A, Fahimi H D, Cajaraville M P. 2000. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem Cell Biol, 114(5): 393–404

    Google Scholar 

  • Paital B, Chainy G B N. 2010. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C, 151(1): 142–151

    Google Scholar 

  • Park H, Ahn I-Y, Lee J K, et al. 2009. Molecular cloning, characterization, and the response of manganese superoxide dismutase from the Antarctic bivalve Laternula elliptica to PCB exposure. Fish Shellfish Immunol, 27(3): 522–528

    Article  Google Scholar 

  • Putnam C D, Arvai A S, Bourne Y, et al. 2000. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol, 296(1): 295–309

    Article  Google Scholar 

  • Storz G, Imlayt J A. 1999. Oxidative stress. Curr Opin Microbiol, 2(2): 188–194

    Article  Google Scholar 

  • Sund H, Weber K, Mölbert E. 1967. Dissociation of beef liver catalase in its subunits. Eur J Biochem, 1(4): 400–410

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, et al. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8): 1596–1599

    Article  Google Scholar 

  • Tavares-Sánchez O L, Gómez-Anduro G A, Felipe-Ortega X, et al. 2004. Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection. Comp Biochem Physiol B, 138(4): 331–337

    Article  Google Scholar 

  • Thompson J L, Thomas P M, Schuller K A. 2006. Purification and properties of a glutathione peroxidase from Southern bluefin tuna (Thunnus maccoyii) liver. Comp Biochem Physiol B, 144(1): 86–93

    Article  Google Scholar 

  • Trasviña-Arenas C H, Garcia-Triana A, Peregrino-Uriarte A B, et al. 2013. White shrimp Litopenaeus vannamei catalase: Gene structure, expression and activity under hypoxia and reoxygenation. Comp Biochem Physiol B Biochem Mol Biol, 164(1): 44–52

    Article  Google Scholar 

  • Wang Weina, Wang Anli, Zhang Yajuan, et al. 2004. Effects of nitrite on lethal and immune response of Macrobrachium nipponense. Aquaculture, 232(1–4): 679–686

    Article  Google Scholar 

  • Wu Chenglong, Mai Kangsen, Zhang Wenbing, et al. 2010. Molecular cloning, characterization and mRNA expression of seleniumdependent glutathione peroxidase from abalone Haliotis discus hannai Ino in response to dietary selenium, zinc and iron. Comp Biochem Physiol C, 152(2): 121–132

    Google Scholar 

  • Xiong Qian, Xie Ping, Li Huiying, et al. 2010. Acute effects of microcystins exposure on the transcription of antioxidant enzyme genes in three organs (liver, kidney, and testis) of male Wistar rats. J Biochem Mol Toxicol, 24(6): 361–367

    Article  Google Scholar 

  • Xu Wenjun, Xie Jianjun, Shi Hui, et al. 2010. Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture, 300(1–4): 25–31

    Article  Google Scholar 

  • Yang Changgeng, Wang Xianli, Tian Juan, et al. 2013. Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus). Gene, 527(1): 183–192

    Article  Google Scholar 

  • Yeh S-P, Liu Kuanfu, Chiu S-T, et al. 2009. Identification and cloning of a selenium dependent glutathione peroxidase from giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol, 27(2): 181–191

    Article  Google Scholar 

  • Yoshimoto M, Sakamoto H, Yoshimoto N, et al. 2007. Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzyme Microb Tech, 41(6–7): 849–858

    Article  Google Scholar 

  • Zhang Qingli, Liu Fuhua, Zhang Xiaojun, et al. 2008. cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol, 24(5): 584–591

    Article  Google Scholar 

  • Zheng Qingmei, Han Chunyan, Wen Rushu, et al. 2011. Full-length cDNA cloning, sequence homology analysis and tissue expression of a catalase gene from grass carp (Ctenopharyngodon idellus). Genomics and Applied Biology (in Chinese), 30(5): 529–538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Foundation item: The Modern Agro-industry Technology Research System under contract No. CARS-47; the National High-tech R & D Program (863 Program) of China under contract No. 2012AA10A409; the Special Fund for Independent Innovation of Shandong Province under contract No. 2013CX80202; the Special Fund for Agro-scientific Research in the Public Interest under contract No. 201103034.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Li, J., Li, J. et al. Cloning of catalase and expression patterns of catalase and selenium-dependent glutathione peroxidase from Exopalaemon carinicauda in response to low salinity stress. Acta Oceanol. Sin. 34, 52–61 (2015). https://doi.org/10.1007/s13131-015-0640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0640-9

Keywords

Navigation