Skip to main content
Log in

Developmental quantitative genetic analysis of body weights and morphological traits in the turbot, Scophthalmus maximus

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

In order to elucidate the genetic mechanism of growth traits in turbot during ontogeny, developmental genetic analysis of the body weights, total lengths, standard lengths and body heights of turbots was conducted by mixed genetic models with additive-dominance effects, based on complete diallel crosses with four different strains of Scophthalmus maximus from Denmark, Norway, Britain, and France. Unconditional genetic analysis revealed that the unconditional additive effects for the four traits were more significant than unconditional dominance effects, meanwhile, the alternative expressions were also observed between the additive and dominant effects for body weights, total lengths and standard lengths. Conditional analysis showed that the developmental periods with active gene expression for body weights, total lengths, standard lengths and body heights were 15–18, 15 and 21–24, 15 and 24, and 21 and 27 months of age, respectively. The proportions of unconditional/conditional variances indicated that the narrow-sense heritabilities of body weights, total lengths and standard lengths were all increased systematically. The accumulative effects of genes controlling the four quantitative traits were mainly additive effects, suggesting that the selection is more efficient for the genetic improvement of turbots. The conditional genetic procedure is a useful tool to understand the expression of genes controlling developmental quantitative traits at a specific developmental period (t-1→t) during ontogeny. It is also important to determine the appropriate developmental period (t-1→t) for trait measurement in developmental quantitative genetic analysis in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atchley W R. 1984. Ontogeny, timing of development, and genetic variance-covariances structure. Am Nat, 123(4): 519–540

    Article  Google Scholar 

  • Atchley W R. 1987. Developmental quantitative genetics and the evolution of ontogenies. Evolution, 41(2): 316–330

    Article  Google Scholar 

  • Atchley W R, Hall B K. 1991. A model for development and evolution of complex morphological structure. Biol Rev, 66(2): 101–157

    Article  Google Scholar 

  • Atchley W R, Logsdon T, Cowley D E, et al. 1991. Uterine effects, epigenetics, and postnatal skeletal development in the mouse. Evolution, 45(4): 891–909

    Article  Google Scholar 

  • Atchley W R, Xu Shizhong, Vogl C. 1994. Developmental quantitative genetic models of evolutionary change. Dev Genet, 15(1): 92–103

    Article  Google Scholar 

  • Atchley W R, Zhu Jun. 1997. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 147(2): 765–776

    Google Scholar 

  • Cowley D E, Atchley W R. 1992. Quantitative genetic models for development, epigenetic selection, and phenotypic evolution. Evolution, 46(2): 495–518

    Article  Google Scholar 

  • Gjerde B, Røer J E, Lein I, et al. 1997. Heritability for body weight in farmed turbot. Aquacult Int, 5(2): 175–178

    Google Scholar 

  • Liu Baosuo, Zhang Tianshi, Kong Jie, et al. 2011. Estimation of genetic parameters for growth and upper thermal tolerance traits in turbot Scophthalmus maximus. J Fish Chin (in Chinese), 35(11): 1601–1605

    Google Scholar 

  • Ma Aijun, Chen Chao, Lei Jilin, et al. 2006. Turbot Scophthalmus maximus: stocking density on growth, pigmentation and feed conversion. Chin J Oceanol Limn, 24(3): 307–312

    Article  Google Scholar 

  • Ma Aajun, Wang Xinan, Lei Jilin. 2009. Genetic parameterization for turbot Scophthalmus maximus: implication to breeding strategy. Oceanologia et Limnologia Sinica (in Chinese), 40(2): 187–194

    Google Scholar 

  • Ma Aijun, Wang Xinan, Yang Zhi, et al. 2008. The growth traits and their heritability of young turbot (Scophthalmus maximus L.). Oceanologia et Limnologia Sinica (in Chinese), 39(5): 499–504

    Google Scholar 

  • Miller R G. 1974. The jackknife: a review. Biometrika, 61(1): 1–15

    Google Scholar 

  • Rao C R. 1970. Estimation of heteroscedastic variances in linear models. J Am Stat Assoc, 65(329): 161–172

    Article  Google Scholar 

  • Rao C R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multivar Anal, 1(3): 257–275

    Article  Google Scholar 

  • Ruan Xiaohong, Wang Weiji, Kong Jie, et al. 2011. Isolation and analysis of microsatellites in the genome of turbot (Scophthalmus maximus L.). Afr J Biotechnol, 10(4): 507–518

    Google Scholar 

  • Shi Chunhai, Wu Jianguo, Fan Longjiang, et al. 2001. Developmental genetic analysis of brown rice weight under different environmental conditions in indica rice. Acta Bot Sin (in Chinese), 43(6): 603–609

    Google Scholar 

  • Shi Chunhai, Wu Jianguo, Lou Xiaobo, et al. 2002. Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res, 76(1): 1–9

    Article  Google Scholar 

  • Wang Chenghui, Li Sifa, Liu Zhiguo, et al. 2006. Developmental quantitative genetic analysis of body weight and morphological traits in red common carp, Cyprinus carpio L.. Aquaculture, 251(2–4): 219–230

    Article  Google Scholar 

  • Wang Xinan, Ma Aijun, Huang Zhihui, et al. 2010. Heritability and genetic correlation of survival in turbot (Scophthalmus maximus). Chin J Oceanol Limn, 28(6): 1200–1205

    Article  Google Scholar 

  • Wang Xinan, Ma Aijun, Huang Zhihui, et al. 2011. Growth patterns of selectively bred turbot Scophthalmus maximus. Oceanologia et Limnologia Sinica (in Chinese), 42(2): 266–273

    Google Scholar 

  • Zhang Qingwen, Kong Jie, Luan Sheng, et al. 2008. Estimation of genetic parameters for three economic traits in 25 d turbot fry. Mar Fish Res (in Chinese), 29(3): 53–56

    Google Scholar 

  • Zhu Jun. 1993. Methods of predicting genotype value and heterosis for offspring of hybrids. J Biomath, 8(1): 32–44

    Google Scholar 

  • Zhu Jun. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 141(4): 1633–1639

    Google Scholar 

  • Zhu Jun. 1997. Analysis Method for Genetic Models (in Chinese). Beijing: China Agricultural Press, 56–87

    Google Scholar 

  • Zhu Jun, Weir B S. 1996. Mixed model approaches for diallel analysis based on a biomodel. Genet Res, 68(3): 233–240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Ma.

Additional information

Foundation item: The Earmarked Fund for Modern Agro-Industry Technology Research System under contract No. CARS-50-G01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, A. & Ma, D. Developmental quantitative genetic analysis of body weights and morphological traits in the turbot, Scophthalmus maximus . Acta Oceanol. Sin. 34, 55–62 (2015). https://doi.org/10.1007/s13131-015-0618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0618-7

Key words

Navigation