Skip to main content
Log in

Laboratory simulation of the influence of geothermal heating on the interior ocean

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

This study, using laboratory experiments and scaling analysis, evaluates the influence of geothermal heating on global oceanic circulation. Upon a well-developed large-scale convective flow, an additional heat flux perturbation δF/F is employed. The increments of flow and thermal properties, including eddy diffusivity K T , flow velocity V and bottom temperature T b, are found to be independent of the applied heat flux F. Together with the scaling analysis of convective flow at different configurations, where the flow is thermally driven in the relatively low or extremely high turbulent thermal convections or the horizontal convection, the variances of flow properties, δK T /K T and δV/V, are found to be close to 0.5% and 0.75% at δF/F=2%. This means that the small heat flux perturbation plays a negligible role in the global convective flow. However, δT bT is found to be 1.5% at δF/F=2%, which would have a significant effect in the local region. The results might provide a clue to understanding the influence of geothermal heating on global oceanic circulation. It is expected that geothermal heating will contribute less than 1% in turbulent mixing and volume flux to global oceanic circulation, so its influence can be negligible in this situation. However, when it comes to the local environment, the influence of geothermal heating cannot be ignored. For example, temperature increases of about 0.5°C with geothermal heating would have a significant effect on the physical environments within the benthic boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adcroft A, Scott J R, Marotzke J. 2001. Impact of geothermal heating on the global ocean circulation. Geophysical Research Letters, 28: 1735–1738, doi:10.1029/2000GL012182

    Article  Google Scholar 

  • Adkins J F, Ingersoll A P, Pasquero C. 2005. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quaternary Science Reviews, 24: 581–594, doi:10.1016/j.quascirev.2004.11.005

    Article  Google Scholar 

  • Ahlers G, Grossmann S, Lohse D. 2009. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 81: 503–537, doi:10.1103/RevModPhys.81.503

    Article  Google Scholar 

  • Brown E, Nikolaenko A, Funfschilling D, et al. 2005. Heat transport in turbulent Rayleigh-Bénard convection: effect of finite top- and bottom-plate conductivities. Physics of Fluids, 17: 075108, doi:10.1063/1.1964987

    Article  Google Scholar 

  • Emile-Geay J, Madec G. 2009. Geothermal heating, diapycnal mixing, and the abyssal circulation. Ocean Science, 5: 203–217, doi:10.5194/os-5-203-2009

    Article  Google Scholar 

  • Gade H G, Gustafsson K E. 2004. Application of classical thermodynamical principles to the study of the oceanic overturning circulation. Tellus: Series A. Dynamic Meteorology and Oceanography, 56: 371–386, doi:10.1111/j.1600-0870.2004.00062.x

    Article  Google Scholar 

  • Goldstein R J, Chiang H D, See D L. 1990. High-Rayleigh-number convection in a horizontal enclosure. Journal of Fluid Mechanics, 213: 111–126, doi:10.1017/S0022112090002245

    Article  Google Scholar 

  • Grossmann S, Lohse D. 2000. Scaling in thermal convection: a unifying theory. Journal of Fluid Mechanics, 407: 27–56, doi:10.1017/S0022112099007545

    Article  Google Scholar 

  • Hasterok D, Chapman D S, Davis E E. 2011. Oceanic heat flow: implications for global heat loss. Earth Planetary Science Letters, 311: 386–395, doi:10.1016/j.epsl.2011.09.044

    Article  Google Scholar 

  • Hofmann M, Maqueda Morales M A. 2009. Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution. Geophysical Research Letters, 36: L03603, doi:10.1029/2008GL036078

    Article  Google Scholar 

  • Huang R X. 1999. Mixing and energetics of the oceanic thermohaline circulation. Journal of Physical Oceanography, 29: 727–746, doi:10.1175/1520-0485(1999)029〈0727:MAEOTO〉2.0.CO; 2

    Article  Google Scholar 

  • Hughes G O, Griffiths R W. 2008. Horizontal convection. Annual Review of Fluid Mechanics, 40: 185–208, doi:10.1146/annurev.fluid.40.111406.102148

    Article  Google Scholar 

  • Houghton J T, Filho L G M, Harris B A, et al. 1996. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press

    Google Scholar 

  • Joyce T M, Warren B A, Talley L D. 1986. The geothermal heating of the abyssal subarctic Pacific Ocean. Deep Sea Research: Part A. Oceanographic Research Papers, 33: 1003–1015, doi:10.1016/0198-0149(86)90026-9

    Article  Google Scholar 

  • Kraichnan R H. 1962. Turbulent thermal convection at arbitrary Prandtl number. Physics of Fluids, 5: 1374, doi:10.1063/1.1706533

    Article  Google Scholar 

  • Lohse D, Xia Keqing. 2010. Small-scale properties of turbulent Rayleigh-Bénard convection. Annual Review of Fluid Mechanics, 42: 335–364, doi:10.1146/annurev.fluid.010908.165152

    Article  Google Scholar 

  • Macdonald A M, Wunsch C. 1996. An estimate of global ocean circulation and heat fluxes. Nature, 382: 436–439, doi:10.1038/382436a0

    Article  Google Scholar 

  • Malkus M V R. 1954. The heat transport and spectrum of thermal turbulence. Proceedings of the Royal Society of London: Series A, 225: 196–212, doi:10.1098/rspa.1954.0197

    Article  Google Scholar 

  • Mullarney J C, Griffiths R W, Hughes G O. 2004. Convection driven by differential heating at a horizontal boundary. Journal of Fluid Mechanics, 516: 181–209, doi:10.1017/S0022112004000485

    Article  Google Scholar 

  • Mullarney J C, Griffiths R W, Hughes G O. 2006. The effects of geothermal heating on the ocean overturning circulation. Geophysical Research Letters, 33: L02607, doi:10.1029/2005GL024956

    Article  Google Scholar 

  • Munk W, Wunsch C. 1998. Abyssal recipes: II. Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45: 1977–2010, doi:10.1016/S0967-0637(98)00070-3

    Article  Google Scholar 

  • Nikolaenko A, Brown E, Funfschilling D, et al. 2005. Heat transport by turbulent Rayleigh-Bénard convection in cylindrical cells with aspect ratio one and less. Journal of Fluid Mechanics, 523: 251–260, doi:10.1017/S0022112004002289

    Article  Google Scholar 

  • Rossby H T. 1965. On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Research and Oceanographic Abstracts, 12: 9–16, doi:10.1016/0011-7471(65)91336-7

    Article  Google Scholar 

  • Sano M, Wu Xiaozhong, Libchaber A. 1989. Turbulence in helium-gas free-convection. Physical Review: A, 40: 6421–6430, doi:10.1103/PhysRevA.40.6421

    Article  Google Scholar 

  • Scott J R, Marotzke J, Adcroft A. 2001. Geothermal heating and its influence on the meridional overturning circulation. Journal of Geophysical Research, 106: 31141–31154, doi:10.1029/2000JC000532

    Article  Google Scholar 

  • Siggia E D. 1994. High Rayleigh number convection. Annual Review of Fluid Mechanics, 26: 137–168, doi:10.1146/annurev.fl.26.010194.001033

    Article  Google Scholar 

  • Spiegel E A. 1971. Convection in stars I. Basic Boussinesq convection. Annual Review of Astronomy and Astrophysics, 9: 323–352, doi:10.1146/annurev.aa.09.090171.001543

    Article  Google Scholar 

  • Stein C, Stein S. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. Journal of Geophysical Research, 99: 3081–3095, doi:10.1029/93JB02222

    Article  Google Scholar 

  • Tailleux R, Rouleau L. 2010. The effect of mechanical stirring on horizontal convection. Tellus: A. Dynamic Meteorology and Oceanography, 62: 138–153, doi:10.1111/j.1600-0870.2009.00426.x

    Article  Google Scholar 

  • Urakawa L, Hasumi H. 2009. A remote effect of geothermal heat on the global thermohaline circulation. Journal of Geophysical Research, 114: C07016, doi:10.1029/2008JC005192

    Article  Google Scholar 

  • Wang Wei, Huang Ruixin. 2005. An experimental study on thermal convection driven by horizontal differential heating. Journal of Fluid Mechanics, 540: 49–73, doi:10.1017/S002211200500577X

    Article  Google Scholar 

  • Xia Keqing, Lam S, Zhou Shengqi. 2002. Heat-flux measurements in high-Prandtl-number Rayleigh-Bénard convection. Physical Review Letters, 88: 064501, doi:10.1103/PhysRevLett.88.064501

    Article  Google Scholar 

  • Xia Keqing, Sun Chao, Zhou Shengqi. 2003. Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Physical Review: E, 68: 066303, doi:10.1103/Phys-RevE.68.066303

    Google Scholar 

  • Zhou Shengqi, Sun Chao, Xia Keqing. 2007. Measured oscillations of the velocity and temperature fields in turbulent Rayleigh-Bénard convection in a rectangular cell. Physical Review: E, 76: 036301, doi:10.1103/PhysRevE.76.036301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqi Zhou.

Additional information

Foundation item: The National Natural Science Foundation (NSF) of China under contract Nos 41176027 and 11072253; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11030302; the State Key Laboratory of Tropical Oceanography (LTO) grant, South China Sea Institute of Oceanography, Chinese Academy of Sciences, under contract No. LTOZZ1304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Qu, L., Zhao, X. et al. Laboratory simulation of the influence of geothermal heating on the interior ocean. Acta Oceanol. Sin. 33, 25–31 (2014). https://doi.org/10.1007/s13131-014-0512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0512-8

Key words

Navigation